如图,在四边形ABCD中,AC=BD,对角线AC,BD交于点0,AC丄BD,E,F,G,H分别AB,BC,CD,DA的中点.求证

如图,在四边形ABCD中,AC=BD,对角线AC,BD交于点0,AC丄BD,E,F,G,H分别AB,BC,CD,DA的中点.求证:四边形EFGH是正方形.... 如图,在四边形ABCD中,AC=BD,对角线AC,BD交于点0,AC丄BD,E,F,G,H分别AB,BC,CD,DA的中点.求证:四边形EFGH是正方形. 展开
 我来答
叛逆尊1062
2015-01-28 · 超过49用户采纳过TA的回答
知道答主
回答量:95
采纳率:0%
帮助的人:124万
展开全部
解答:证明:在△ABC中,E、F分别是AB、BC的中点,
故可得:EF=
1
2
AC,同理FG=
1
2
BD,GH=
1
2
AC,HE=
1
2
BD,
在四边形ABCD中,AC=BD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
在△ABD中,E、H分别是AB、AD的中点,
则EH∥BD,
同理GH∥AC,
又∵AC⊥BD,
∴EH⊥HG,
∴四边形EFGH是正方形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式