如图,直线y=kx+b与y轴的交点坐标为A(0,1),与x轴的交点坐标为B(-3,0);P、Q分别是x轴和直线AB上的

如图,直线y=kx+b与y轴的交点坐标为A(0,1),与x轴的交点坐标为B(-3,0);P、Q分别是x轴和直线AB上的一动点,在运动过程中,始终保持QA=QP;△APQ沿... 如图,直线y=kx+b与y轴的交点坐标为A(0,1),与x轴的交点坐标为B(-3,0);P、Q分别是x轴和直线AB上的一动点,在运动过程中,始终保持QA=QP;△APQ沿直线PQ翻折得到△CPQ,A点的对称点是点C.(1)求直线AB的解析式.(2)是否存在点P,使得点C恰好落在直线AB上?若存在,请求出点P的坐标;若不存在,请说明理由. 展开
 我来答
手机用户80001
推荐于2016-01-06 · TA获得超过183个赞
知道答主
回答量:131
采纳率:0%
帮助的人:136万
展开全部
(1)设直线AB的解析式为y=kx+b,则
b=1
-3k+b=0

解得
b=1
k=
1
3

y=
1
3
x+1


(2)分三种情况考虑下
第一种情况(如图甲):设P的坐标为(t,0)
∵△APQ与△CPQ关于直线PQ对称,并且点A,Q,C共线,
∴∠AQP=∠CQP=90°,
∵QA=QP,∴QA=QP=QC
即△AQP,△CQP都是等腰直角三角形,
∴△APC是以P为顶角的等腰直角三角形.
根据AAS可以得到△AOP≌△PHC,
∴CH=OP=t,PH=OA=1,
∴点C的坐标为(t+1,t).
∵点C落在直线AB上,
1
3
(t+1)+1=t
,解得t=2.即P的坐标为(2,0).

第二种情况(如图乙):设P的坐标为(t,0)
∵△APQ与△CPQ关于直线PQ对称,并且点A,Q,C共线,
∴∠AQP=∠CQP=90°,
∵QA=QP,∴QA=QP=QC,
即△AQP,△CQP都是等腰直角三角形,
∴△APC是以P为顶角的等腰直角三角形.
根据AAS可以得到△AOP≌△PHC,
∴CH=OP=-t,PH=OA=1,
∴点C的坐标为(t-1,-t).
∵点C落在直线AB上,∴
1
3
(t-1)+1=-t
,解得 t=-
1
2

即P的坐标为( -
1
2
,0).

第三种情况(如图丙):
当点P与点B重合时,Q恰好是线段AB的中
点,此时点A关于直线PQ的对称点C与点A重
合,但A,P,Q三点共线,不能构成三角形,
故不符合题意.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式