已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若
已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由...
已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.
展开
1个回答
展开全部
∵x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根,
∴由根与系数的关系可知,x1x2=
,x1+x2=-
;
∵一元二次方程(a-6)x2+2ax+a=0有两个实数根,
∴△=4a2-4(a-6)?a≥0,且a-6≠0,
解得,a≥0,且a≠6;
(1)∵-x1+x1x2=4+x2,
∴x1x2=4+(x1+x2),即
=4-
,
解得,a=24>0;
∴存在实数a,使-x1+x1x2=4+x2成立,a的值是24;
(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=
-
+1=-
,
∴当(x1+1)(x2+1)为负整数时,a-6>0,且a-6是6的约数,
∴a-6=6,a-6=3,a-6=2,a-6=1,
∴a=12,9,8,7;
∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.
∴由根与系数的关系可知,x1x2=
a |
a?6 |
2a |
a?6 |
∵一元二次方程(a-6)x2+2ax+a=0有两个实数根,
∴△=4a2-4(a-6)?a≥0,且a-6≠0,
解得,a≥0,且a≠6;
(1)∵-x1+x1x2=4+x2,
∴x1x2=4+(x1+x2),即
a |
a?6 |
2a |
a?6 |
解得,a=24>0;
∴存在实数a,使-x1+x1x2=4+x2成立,a的值是24;
(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=
a |
a?6 |
2a |
a?6 |
6 |
a?6 |
∴当(x1+1)(x2+1)为负整数时,a-6>0,且a-6是6的约数,
∴a-6=6,a-6=3,a-6=2,a-6=1,
∴a=12,9,8,7;
∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询