在△ABC中,AB=AC,∠BAC=90°,D、E为斜边BC上两点(不与B、C重合),且∠DAE=45°,把△ABD沿着AD折叠
在△ABC中,AB=AC,∠BAC=90°,D、E为斜边BC上两点(不与B、C重合),且∠DAE=45°,把△ABD沿着AD折叠,得到△ADF.那么正确结论有()①△DE...
在△ABC中,AB=AC,∠BAC=90°,D、E为斜边BC上两点(不与B、C重合),且∠DAE=45°,把△ABD沿着AD折叠,得到△ADF.那么正确结论有( )①△DEF是直角三角形;②△AFE≌△ACE;③BD+EC>DE;④AF是∠BAC的平分线.A.1个B.2个C.3个D.4个
展开
展开全部
∵把△ABD沿着AD折叠,得到△ADF,
∴△AFD≌△ABD;
∴AB=AF,BD=FD,∠B=∠DFA,∠BAD=∠FAD,
∵AB=AC,
∴AF=AC,
∵∠DAE=45°,
∴∠FAE=∠CAE,
在△AFE与△ACE中,
,
∴△AFE≌△ACE,故②正确;
∴∠AFE=∠C,EF=EC,
∴∠DFE=∠DFA+∠EFA=∠B+∠C=90°,即△DEF是直角三角形,故①正确;
BD+EC=DF+FE>DE,故③正确;
无法证明AF是∠BAC的平分线,故④错误.
故正确结论有3个.
故选C.
∴△AFD≌△ABD;
∴AB=AF,BD=FD,∠B=∠DFA,∠BAD=∠FAD,
∵AB=AC,
∴AF=AC,
∵∠DAE=45°,
∴∠FAE=∠CAE,
在△AFE与△ACE中,
|
∴△AFE≌△ACE,故②正确;
∴∠AFE=∠C,EF=EC,
∴∠DFE=∠DFA+∠EFA=∠B+∠C=90°,即△DEF是直角三角形,故①正确;
BD+EC=DF+FE>DE,故③正确;
无法证明AF是∠BAC的平分线,故④错误.
故正确结论有3个.
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询