求第10题解~
2个回答
追答
考点:二次函数的最值;等腰梯形的性质;解直角三角形.考点微视频
分析:根据圆心为O,则OA=OB=OC=OD=2,设腰长为x,设上底长是2b,利用勾股定理得出,则x2-(2-b)2=R2-b2=CP2,再利用二次函数最值求出即可.
解答:解:圆心为O,连接OD,OC,过O作OE⊥CD,过C作CP⊥OB,
∴E为DC的中点,DE=CE=
1
2
CD=b,
∵等腰梯形ABCD,
∴DC∥AB,OE⊥CD,
∴OE⊥AB,
∴∠CEO=∠EOP=∠OPC=90°,
∴四边形EOPC为矩形,
∴EC=OP,
则OA=OB=OC=OD=2,设腰长为x,
设上底长是2b,过C作直径的垂线,垂足是P,
则CP2=OC2-OP2=CB2-PB2,
即x2-(2-b)2=22-b2,
整理得b=2-
x2
4
,
所以y=4+2x+2b=4+2x+4-
x2
2
=-
x2
2
+2x+8,
∴该梯形周长的最大值是:
4ac−b 2
4a
=
−16−4
−2
=10.
故答案为:10.
点评:此题主要考查了二次函数的最值以及等腰梯形的性质和解直角三角形,根据题意得出x2-(2-b)2=R2-b2=CP2 从而利用二次函数最值求法求出是解决问题的关键.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询