(2010?石景山区一模)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB

(2010?石景山区一模)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.(Ⅰ)求证:CF⊥BB1;... (2010?石景山区一模)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.(Ⅰ)求证:CF⊥BB1;(Ⅱ)求四棱锥A-ECBB1的体积;(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明. 展开
 我来答
翦子美女RIC
2015-01-20 · TA获得超过106个赞
知道答主
回答量:98
采纳率:0%
帮助的人:124万
展开全部
解答:解:如图,
(Ⅰ)证明:∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC;
又∵CF?平面ABC,∴CF⊥BB1

(Ⅱ)解:∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC.
又∵AC?平面ABC,∴AC⊥BB1
∵∠ACB=90°,∴AC⊥BC.
且BB1∩BC=B,∴AC⊥平面ECBB1
∴四棱锥VA?ECBB1的体积为
VA?ECBB1
1
3
SECBB1?AC

由E是棱CC1的中点,∴EC=
1
2
AA1=2

SECBB1
1
2
(EC+BB1)?BC=
1
2
×(2+4)×2=6

VA?ECBB1
1
3
SECBB1?AC=
1
3
×6×2=4


(Ⅲ)解:CF∥平面AEB1.现证明如下:
取AB1的中点G,连接EG,FG.∵F、G分别是棱AB、AB1中点,
∴FG∥BB1,且FG=
1
2
BB1
又∵EC∥BB1,且EC=
1
2
BB1
,∴FG∥EC,且FG=EC.
∴四边形FGEC是平行四边形.∴CF∥EG.
又∵CF?平面AEB1,EG?平面AEB1
∴CF∥平面AEB1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式