已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一
已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数...
已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.
展开
1个回答
展开全部
(1)∵△ABC中,AB=AC,∠BAC=30°,
∴∠ABC=∠ACB=
=75°,
∵DB=DC,∠DCB=30°,
∴∠DBC=∠DCB=30°,
∴∠ABD=∠ABC-∠DBC=45°,
∵AB=AC,DB=DC,
∴AD所在直线垂直平分BC,
∴AD平分∠BAC,
∴∠BAD=
∠BAC=15°,
∴∠ADE=∠ABD+∠BAD=60°;
(2)连接AM,
∵∠ADE=60°,DM=AD,
∴△ADM是等边三角形,
∴∠ADB=∠AME=120°
∵AE=AB,
∴∠ABD=∠E,
在△ABD和△AEM中,
,
∴△ABD≌△AEM(AAS),
∴BD=ME,
∵BD=CD,
∴CD=ME.
∴∠ABC=∠ACB=
180°?30° |
2 |
∵DB=DC,∠DCB=30°,
∴∠DBC=∠DCB=30°,
∴∠ABD=∠ABC-∠DBC=45°,
∵AB=AC,DB=DC,
∴AD所在直线垂直平分BC,
∴AD平分∠BAC,
∴∠BAD=
1 |
2 |
∴∠ADE=∠ABD+∠BAD=60°;
(2)连接AM,
∵∠ADE=60°,DM=AD,
∴△ADM是等边三角形,
∴∠ADB=∠AME=120°
∵AE=AB,
∴∠ABD=∠E,
在△ABD和△AEM中,
|
∴△ABD≌△AEM(AAS),
∴BD=ME,
∵BD=CD,
∴CD=ME.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询