(文科)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=

(文科)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.(Ⅰ)求{an}和{bn... (文科)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.(Ⅰ)求{an}和{bn}的通项公式.(Ⅱ)令Cn=nbn(n∈N+),求{cn}的前n项和Tn. 展开
 我来答
原玉恋6365
2014-08-13 · 超过66用户采纳过TA的回答
知道答主
回答量:109
采纳率:100%
帮助的人:118万
展开全部
(Ⅰ)设公差为d,公比为q,
则a2b2=(3+d)q=12①
S3+b2=3a2+b2=3(3+d)+q=20②
联立①②可得,(3d+7)(d-3)=0
∵{an}是单调递增的等差数列,d>0.
则d=3,q=2,
∴an=3+(n-1)×3=3n,bn=2n-1…(6分)
(Ⅱ)bn=2n-1,cn=n?2n-1
∴Tn=c1+c2+…+cn
Tn=1?20+2?21+3?22+…+n?2n-1
2Tn=1?21+2?22+…+(n-1)?2n-1+n?2n…(9分)
两式相减可得,-Tn=1?20+1?21+1?22+…+1?2n-1-n?2n
∴-Tn=
1?2n
1?2
?n?2n
=2n-1-n?2n
∴Tn=(n-1)?2n+1…(13分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式