已知正项数列{an}的前n项和Sn满足:4Sn=(an+1)2,n∈N*,(Ⅰ)求数列{an}的通项an和前n项和Sn;(Ⅱ)
已知正项数列{an}的前n项和Sn满足:4Sn=(an+1)2,n∈N*,(Ⅰ)求数列{an}的通项an和前n项和Sn;(Ⅱ)求数列{1anan+1}的前n项和Tn;(Ⅲ...
已知正项数列{an}的前n项和Sn满足:4Sn=(an+1)2,n∈N*,(Ⅰ)求数列{an}的通项an和前n项和Sn;(Ⅱ)求数列{1anan+1}的前n项和Tn;(Ⅲ)证明:不等式 5836-1n+1<1S1+1S2+…+1Sn<2对任意的n>3,n∈N*都成立.
展开
1个回答
展开全部
(1)∵4Sn=(an+1)2,n∈N*,∴4Sn?1=(an+1)2(n≥2),
∴4an=(an+1)2?(an?1+1)2,化为(an+an-1)(an-an-1-2)=0,
又∵正项数列{an},∴an+an-1≠0,
∴an-an-1=2(n≥2),
又n=1时,4a1=4S1=(a1+1)2>0,
解得a1=1,
∴数列{an}是以1为首项,2为公差的等差数列.
∴an=2n-1.
∴Sn=
(an+1)2=n2.
(2)由(1)可得:
=
=
(
?
),
∴Tn=
[(1?
)+(
?
)+…+(
?
)]=
(1?
)=
?
.
(3)证明:
+
+…+
=1+
+
+…+
<1+
+
+…+
=1+(1?
)+(
?
)+…+(
?
)=2-
<2.
又
+
+…+
=1+
+
+…+
>1+
+
+
+…+
=1+
+
+(
?
)+…+(
?
)=
?
(n>3)
∴不等式
-
<
+
+…+
<2对任意的n>3,n∈N*都成立.
∴4an=(an+1)2?(an?1+1)2,化为(an+an-1)(an-an-1-2)=0,
又∵正项数列{an},∴an+an-1≠0,
∴an-an-1=2(n≥2),
又n=1时,4a1=4S1=(a1+1)2>0,
解得a1=1,
∴数列{an}是以1为首项,2为公差的等差数列.
∴an=2n-1.
∴Sn=
1 |
4 |
(2)由(1)可得:
1 |
anan+1 |
1 |
(2n?1)(2n+1) |
1 |
2 |
1 |
2n?1 |
1 |
2n+1 |
∴Tn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n?1 |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
1 |
2 |
1 |
4n+2 |
(3)证明:
1 |
S1 |
1 |
S2 |
1 |
Sn |
=1+
1 |
22 |
1 |
32 |
1 |
n2 |
<1+
1 |
1×2 |
1 |
2×3 |
1 |
(n?1)n |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n?1 |
1 |
n |
1 |
n |
又
1 |
S1 |
1 |
S2 |
1 |
Sn |
=1+
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
4 |
1 |
9 |
1 |
4×5 |
1 |
n(n+1) |
1 |
4 |
1 |
9 |
1 |
4 |
1 |
5 |
1 |
n |
1 |
n+1 |
58 |
36 |
1 |
n+1 |
∴不等式
58 |
36 |
1 |
n+1 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询