已知数列{an}的前n项和为Sn,满足Sn=2an-2n+1.(1)证明:数列{an2n}是等差数列,并求数列{an}的通项公
已知数列{an}的前n项和为Sn,满足Sn=2an-2n+1.(1)证明:数列{an2n}是等差数列,并求数列{an}的通项公式an;(Ⅱ)设bn=an4n,数列{bn}...
已知数列{an}的前n项和为Sn,满足Sn=2an-2n+1.(1)证明:数列{an2n}是等差数列,并求数列{an}的通项公式an;(Ⅱ)设bn=an4n,数列{bn}的前n项和为Tn,求证1≤T<3.
展开
小侽250r
推荐于2016-02-22
·
TA获得超过145个赞
关注
解答:证明:(1)n=1时,a
1=4;
n≥2时,a
n=S
n-S
n-1,可得a
n=2a
n-1+2
n,
∴
-
=1,
∴数列{
}是首项为2,公差为1的等差数列,
∴
=n+1,
∴a
n=(n+1)?2
n;
(Ⅱ)b
n=
=(n+1)?2
-n,
∴T
n=2?
+3?
+…+(n+1)?
,
∴
T
n=2?
+…+n?
+(n+1)?
,
两式相减,
T
n=1+
+…+
-(n+1)?
=
?∴T
n=3-
,
∵y=
单调递减,T
n=3-
单调递增,n=1时,T
n=1,n→+∞时,T
n→3,
∴1≤T
n<3.
收起
为你推荐: