第14题。谢谢!
展开全部
原式=lim(n->∞)【(2n-1+1)n/[2(n+1)] -(2n+1)/2】
=lim(n->∞)【2n方/[2(n+1)] -(2n+1)/2】
=lim(n->∞)[(2n方-(n+1)(2n+1)]/[2(n+1)]
=lim(n->∞)[(2n方-(n+1)(2n+1)]/[2(n+1)]
=lim(n->∞)[2n方-2n方-3n-1]/[2(n+1)]
=lim(n->∞)[-3n-1]/[2(n+1)]
=lim(n->∞)[-3-1/n]/[2(1+1/n)]
=-3/2
=lim(n->∞)【2n方/[2(n+1)] -(2n+1)/2】
=lim(n->∞)[(2n方-(n+1)(2n+1)]/[2(n+1)]
=lim(n->∞)[(2n方-(n+1)(2n+1)]/[2(n+1)]
=lim(n->∞)[2n方-2n方-3n-1]/[2(n+1)]
=lim(n->∞)[-3n-1]/[2(n+1)]
=lim(n->∞)[-3-1/n]/[2(1+1/n)]
=-3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询