如图,ABCD是边长为4cm的正方形,M是CD的中点,有一动点P从A点出发,以1cm/s的速度沿A→B→C→D→A方向运
如图,ABCD是边长为4cm的正方形,M是CD的中点,有一动点P从A点出发,以1cm/s的速度沿A→B→C→D→A方向运动,设P点运动的时间为t(s),△APM的面积为S...
如图,ABCD是边长为4cm的正方形,M是CD的中点,有一动点P从A点出发,以1cm/s的速度沿A→B→C→D→A方向运动,设P点运动的时间为t(s),△APM的面积为S(cm2).(1)当t=3时,求S;(2)当t=7时,求S;(3)当4<t≤8时,试确定t与S的函数关系式;(4)当8<t≤16且t≠10时,试确定t与S的函数关系式.
展开
1个回答
展开全部
解:(1)当t=3时,如图:
过点M作MN⊥AB于N,
∵四边形ABCD是正方形,
∴四边形MNBC是矩形,
∴MN=AD=4,
根据题意得:PA=3,
∴S=
PA?MN=
×3×4=6;
(2)当t=7时,如图:
根据题意得:AB+BP=7,AB=BC=CD=4,
∴BP=3,CP=1,
∵M是CD的中点,
∴DM=CM=
CD=2,
∴S=S正方形ABCD-S△ADM-S△ABP-S△PCM=4×4-
×4×3-
×1×2-
×2×4=5;
(3)当4<t≤8时,如图:
根据题意得:AB+BP=t,AB=BC=CD=4,
∴BP=t-4,CP=8-t,
∵M是CD的中点,
∴DM=CM=
CD=2,
∴S=S正方形ABCD-S△ADM-S△ABP-S△PCM=4×4-
×4×(t-4)-
×(8-t)×2-
×2×4=12-t;
∴当4<t≤8时,t与S的函数关系式为S=12-t;
(4)当8<t<10时,如图1:
根据题意得:AB+BC+CP=t,AB=BC=CD=4,
∴CP=t-8,
∵M是CD的中点,
∴DM=CM=
CD=2,
∴PM=CM-CP=2-(t-8)=10-t,
∴S=
MP?AD=
×(10-t)×4=20-2t;
当10<t≤12时,如图2:
根据题意得:AB+BC+CP=t,AB=BC=CD=4,
∴CP=t-8,
∵M是CD的中点,
∴DM=CM=
CD=2
∴PM=CP-CM=(t-8)-2=t-10,
∴S=
MP?AD=
×(t-10)×4=2t-20;
当12<t≤16时,如图3:
根据题意得:AB+BC+CD+DP=t,AB=BC=CD=AD=4,
∴DP=t-12,
∵M是CD的中点,
∴DM=CM=
CD=2,
∴S=S正方形ABCD-S△DPM-S梯形ABCM=4×4-
×2×(t-12)-
×(2+4)×4=16-t;
∴当8<t≤16且t≠10时,t与S的函数关系式为:S=
过点M作MN⊥AB于N,
∵四边形ABCD是正方形,
∴四边形MNBC是矩形,
∴MN=AD=4,
根据题意得:PA=3,
∴S=
1 |
2 |
1 |
2 |
(2)当t=7时,如图:
根据题意得:AB+BP=7,AB=BC=CD=4,
∴BP=3,CP=1,
∵M是CD的中点,
∴DM=CM=
1 |
2 |
∴S=S正方形ABCD-S△ADM-S△ABP-S△PCM=4×4-
1 |
2 |
1 |
2 |
1 |
2 |
(3)当4<t≤8时,如图:
根据题意得:AB+BP=t,AB=BC=CD=4,
∴BP=t-4,CP=8-t,
∵M是CD的中点,
∴DM=CM=
1 |
2 |
∴S=S正方形ABCD-S△ADM-S△ABP-S△PCM=4×4-
1 |
2 |
1 |
2 |
1 |
2 |
∴当4<t≤8时,t与S的函数关系式为S=12-t;
(4)当8<t<10时,如图1:
根据题意得:AB+BC+CP=t,AB=BC=CD=4,
∴CP=t-8,
∵M是CD的中点,
∴DM=CM=
1 |
2 |
∴PM=CM-CP=2-(t-8)=10-t,
∴S=
1 |
2 |
1 |
2 |
当10<t≤12时,如图2:
根据题意得:AB+BC+CP=t,AB=BC=CD=4,
∴CP=t-8,
∵M是CD的中点,
∴DM=CM=
1 |
2 |
∴PM=CP-CM=(t-8)-2=t-10,
∴S=
1 |
2 |
1 |
2 |
当12<t≤16时,如图3:
根据题意得:AB+BC+CD+DP=t,AB=BC=CD=AD=4,
∴DP=t-12,
∵M是CD的中点,
∴DM=CM=
1 |
2 |
∴S=S正方形ABCD-S△DPM-S梯形ABCM=4×4-
1 |
2 |
1 |
2 |
∴当8<t≤16且t≠10时,t与S的函数关系式为:S=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|