已知函数f(x)=ex-ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x
已知函数f(x)=ex-ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f...
已知函数f(x)=ex-ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.
展开
1个回答
展开全部
(1)f′(x)=ex-a,
令f′(x)=0,解可得x=lna;
当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,
故当x=lna时,f(x)取最小值,f(lna)=a-alna,
对一切x∈R,f(x)≥1恒成立,当且仅当a-alna≥1,①
令g(t)=t-tlnt,则g′(t)=-lnt,
当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,
故当t=1时,g(t)取得最大值,且g(1)=1,
因此当且仅当a=1时,①式成立,
综上所述,a的取值的集合为{1}.
(2)根据题意,k=
=
-a,
令φ(x)=f′(x)-k=ex-
,
则φ(x1)=-
[ex2?x1-(x2-x1)-1],
φ(x2)=
[ex1?x2-(x1-x2)-1],
令F(t)=et-t-1,则F′(t)=et-1,
当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,
则F(t)的最小值为F(0)=0,
故当t≠0时,F(t)>F(0)=0,即et-t-1>0,
从而ex2?x1-(x2-x1)-1>0,且
>0,则φ(x1)<0,
ex1?x2-(x1-x2)-1>0,
>0,则φ(x2)>0,
因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,
即f′(x0)=K成立.
令f′(x)=0,解可得x=lna;
当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,
故当x=lna时,f(x)取最小值,f(lna)=a-alna,
对一切x∈R,f(x)≥1恒成立,当且仅当a-alna≥1,①
令g(t)=t-tlnt,则g′(t)=-lnt,
当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,
故当t=1时,g(t)取得最大值,且g(1)=1,
因此当且仅当a=1时,①式成立,
综上所述,a的取值的集合为{1}.
(2)根据题意,k=
f(x2)?f(x1) |
x2?x1 |
ex2?ex1 |
x2?x1 |
令φ(x)=f′(x)-k=ex-
ex2?ex1 |
x2?x1 |
则φ(x1)=-
ex1 |
x2?x1 |
φ(x2)=
ex2 |
x2?x1 |
令F(t)=et-t-1,则F′(t)=et-1,
当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,
则F(t)的最小值为F(0)=0,
故当t≠0时,F(t)>F(0)=0,即et-t-1>0,
从而ex2?x1-(x2-x1)-1>0,且
ex1 |
x2?x1 |
ex1?x2-(x1-x2)-1>0,
ex2 |
x2?x1 |
因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,
即f′(x0)=K成立.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询