数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,若b1=1,则b2005=______

数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,若b1=1,则b2005=______.... 数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,若b1=1,则b2005=______. 展开
 我来答
暮群6848
2014-11-29 · TA获得超过103个赞
知道答主
回答量:184
采纳率:0%
帮助的人:130万
展开全部
等差数列{an}中,a1=b1=1,a3=1+2d,a7=1+6d,
因为a1、a3、a7恰好是某等比数列{bn}的连续前三项,
所以有a32=a1a7,即(1+2d)2=1×(1+6d),
解得d=
1
2
,(d=0舍去)
所以b1=1,b2=a3=2,b3=a7=4
等比数列{bn}的通项公式为:bn=2n-1
故b2005=22004
故答案为:22004
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式