在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°
在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)求二...
在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)求二面角D-PC-B的余弦值.
展开
展开全部
(1)证明:∵△ABC是正三角形,M是AC中点,
∴BM⊥AC,即BD⊥AC.
又∵PA⊥平面ABCD,∴PA⊥BD.
又PA∩AC=A,∴BD⊥平面PAC.
∴BD⊥PC.
(2)解:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,
∴B(4,0,0),C(2,2
,0),D(0,
,0),P(0,0,4).
设平面PBC的一个法向量为
=(x,y,z),则
∵
=(2,2
,-4),
=(4,0,-4),
∴
∴BM⊥AC,即BD⊥AC.
又∵PA⊥平面ABCD,∴PA⊥BD.
又PA∩AC=A,∴BD⊥平面PAC.
∴BD⊥PC.
(2)解:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,
∴B(4,0,0),C(2,2
3 |
4
| ||
3 |
设平面PBC的一个法向量为
n |
∵
PC |
3 |
PB |
∴
|