(2014?泉州模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA=PD,PA⊥AB,点E、F分别是棱AD、BC的中
(2014?泉州模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA=PD,PA⊥AB,点E、F分别是棱AD、BC的中点.(Ⅰ)求证:AB⊥PD;(Ⅱ)若AB=...
(2014?泉州模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA=PD,PA⊥AB,点E、F分别是棱AD、BC的中点.(Ⅰ)求证:AB⊥PD;(Ⅱ)若AB=AP,求平面PAD与平面PBC所成锐二面角的余弦值;(Ⅲ)若△PAD的面积为1,在四棱锥P-ABCD内部,放入一个半径为R的球O,且球心O在截面PEF中,试探究R的最大值,并说明理由.
展开
展开全部
(Ⅰ)证明:∵AB⊥AD,AB⊥PA,PA∩AD=A,
∴AB⊥平面PAD,
∵PD?平面PAD,
∴AB⊥PD;
(Ⅱ)解:连接PE,EF,则
∵点E、F分别是棱AD、BC的中点,
∴PE⊥AD,EF∥AB,
∵AB⊥平面PAD,
∴EF⊥平面PAD,
∴EF⊥AD,EF⊥PE,
建立如图所示的坐标系,设AB=2,则A(1,0,0),D(-1,0,0),B(1,2,0),C(-1,2,0)F(0,2,0),P(0,0,
),
∴
=(1,2,-
),
=(-1,2,-
),
平面PAD的一个法向量为
=(0,2,0),
设平面PBD的一个法向量为
=(x,y,z),则
∴AB⊥平面PAD,
∵PD?平面PAD,
∴AB⊥PD;
(Ⅱ)解:连接PE,EF,则
∵点E、F分别是棱AD、BC的中点,
∴PE⊥AD,EF∥AB,
∵AB⊥平面PAD,
∴EF⊥平面PAD,
∴EF⊥AD,EF⊥PE,
建立如图所示的坐标系,设AB=2,则A(1,0,0),D(-1,0,0),B(1,2,0),C(-1,2,0)F(0,2,0),P(0,0,
3 |
∴
PB |
3 |
PC |
3 |
平面PAD的一个法向量为
AB |
设平面PBD的一个法向量为
n |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|