求正弦、余弦函数公式!!
1、公式一,设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
2、公式二,设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
3、公式三,任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):
sin(-α)=-sinα
cos(-α)= cosα
tan(-α)=-tanα
cot (—α) =—cotα
4、公式四,利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
5、公式五,利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)= cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、公式六,π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
参考资料来源:百度百科—三角函数公式
2019-12-21
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(2π-a)=cos(a)
cos(2π-a)=sin(a)
sin(2π+a)=cos(a)
cos(2π+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
tgA=tanA=sinAcosA
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.积化和差公式 (上面公式反过来就得到了)
sin(a)sin(b)=-12⋅[cos(a+b)-cos(a-b)]
cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)]
sin(a)cos(b)=12⋅[sin(a+b)+sin(a-b)]
5.二倍角公式
sin(2a)=2sin(a)cos(a)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
6.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
7.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
8.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)-b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
csc(a)=1sin(a)
sec(a)=1cos(a)
广告 您可能关注的内容 |