四边形的内角和是多少度
四边形的内角和等于360度。四边形可以分成两个三角形。
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。
顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。
扩展资料:
多边形内角和:〔n-2〕×180°(n为边数)
多边形内角和定理证明:
在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)。
即n边形的内角和等于(n-2)×180°.(n为边数)。
360度。
凸四边形的内角和和外角和均为360度。多边形的内角和计算公式:〔n-2〕×180°(n为边数)。
多边形内角和定理证明:
证法:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°(n为边数)
即n边形的内角和等于(n-2)×180°(n为边数)
扩展资料
分类:
1、凸四边形
四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边均在其同侧。平行四边形(包括:普通平行四边形,矩形,菱形,正方形)。梯形(包括:普通梯形,直角梯形,等腰梯形)。
2、凹四边形
凹四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边有些在其异侧。
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
中点四边形的形状取决于原四边形的对角线。若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
参考资料来源:百度百科-多边形内角和定理
参考资料来源:百度百科-四边形
2、证明:
方法一:过四边形的一个顶点作对角线,得到2 个三角形,根据三角形内角和定理可得四边形的内角和为2*180=360度
方法二:过四边形一边上的任意一点作对角线,可得三个三角形,得到四边形的内角和为3*180-180=360度
方法三:过四边形内部的任意一点与顶连线,可得四个三角形,则可得四边形的内角和为180*4-360=360度
3、推论:
任意凸四边形的内角和公式:
多边形内角和=180×(n-2),其中n是多边形的边数
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。
顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。