数学问题!!!!!!!!!!!! 5
f(x)=1/3x^3+ax^2+5x+6在区〔1,3〕上是增函数,求a的取值范围,怎么写?要详细过程...
f(x)= 1/3x^3 + ax^2 +5x +6 在区〔1,3〕上是增函数,求a的取值范围,怎么写?
要详细过程 展开
要详细过程 展开
4个回答
展开全部
。。。。。。。。。。。。。。。。。。。。
我数学不好 = =
我数学不好 = =
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
f'(x)=x^2+2ax+5
函数在区间(1,3)上单调递增,即f'(x)在(1,3)上>0,也就是当1<x<3时,x^2+2ax+5>0成立。
令g(x)=x^2+2ax+5
g(x)=(x+a)^2+5-a^2
对称轴x=-a
分类讨论:
-a≤1时,即a≥-1时,g(x)在(1,3)上单调递增,要不等式成立,则g(1)≥0
1+2a+5≥0 a≥-3 又a≥-1 得a≥-1
-a≥3时,即a≤-3时,g(x)在(1,3)上单调递减,要不等式成立,则g(3)≥0
9+6a+6≥0 a≥-2.5(舍去)
1<-a<3时,即-3<a<-1时,函数顶点在(1,3)上,当x=-a时,函数取得最小值5-a^2,要不等式成立,则5-a^2>0
5-a^2>0 -√5<a<√5,又-3<a<-1,可得-√5<a<-1
综上,得a的取值范围为(-√5,+∞)
f'(x)=x^2+2ax+5
函数在区间(1,3)上单调递增,即f'(x)在(1,3)上>0,也就是当1<x<3时,x^2+2ax+5>0成立。
令g(x)=x^2+2ax+5
g(x)=(x+a)^2+5-a^2
对称轴x=-a
分类讨论:
-a≤1时,即a≥-1时,g(x)在(1,3)上单调递增,要不等式成立,则g(1)≥0
1+2a+5≥0 a≥-3 又a≥-1 得a≥-1
-a≥3时,即a≤-3时,g(x)在(1,3)上单调递减,要不等式成立,则g(3)≥0
9+6a+6≥0 a≥-2.5(舍去)
1<-a<3时,即-3<a<-1时,函数顶点在(1,3)上,当x=-a时,函数取得最小值5-a^2,要不等式成立,则5-a^2>0
5-a^2>0 -√5<a<√5,又-3<a<-1,可得-√5<a<-1
综上,得a的取值范围为(-√5,+∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询