高一数学,急急急~
已知△ABC的内角为A、B、C,求证:sin^2(A/2)+sin^2(B/2)+sin^2(C/2)≥3/4...
已知△ABC的内角为A、B、C , 求证:sin^2(A/2)+sin^2(B/2)+sin^2(C/2)≥3/4
展开
展开全部
sin^2(A/2)+sin^2(B/2)+sin^2(C/2)
=(1/2)[1-cosA+1-cosB+1-cosC]
=3/2-(1/2)[2cos(A+B)/2cos(A-B)/2-cos(A+B)]
=3/2-(1/2)[2cos(A+B)/2cos(A-B)/2-2cos^2(A+B)/2+1]
=1-(1/2)*2cos(A+B)/2[cos(A-B)/2-cos(A+B)/2]
=1-2sin(A/2)sin(B/2)sin(C/2)
因sin^2(A/2)+sin^2(B/2)+sin^2(C/2)≥3[sin(A/2)sin(B/2)sin(C/2)]^(2/3)
设sin(A/2)sin(B/2)sin(C/2)=x
则1-2x≥3x^(2/3)
(1-2x)^3≥27x^2
(1+x)^2(1-8x)≥0
∵(1+x)^2≥0
∴1-8x≥0 x≤1/8
1-2sin(A/2)sin(B/2)sin(C/2)≤1-2*(1/8)=3/4
得证
=(1/2)[1-cosA+1-cosB+1-cosC]
=3/2-(1/2)[2cos(A+B)/2cos(A-B)/2-cos(A+B)]
=3/2-(1/2)[2cos(A+B)/2cos(A-B)/2-2cos^2(A+B)/2+1]
=1-(1/2)*2cos(A+B)/2[cos(A-B)/2-cos(A+B)/2]
=1-2sin(A/2)sin(B/2)sin(C/2)
因sin^2(A/2)+sin^2(B/2)+sin^2(C/2)≥3[sin(A/2)sin(B/2)sin(C/2)]^(2/3)
设sin(A/2)sin(B/2)sin(C/2)=x
则1-2x≥3x^(2/3)
(1-2x)^3≥27x^2
(1+x)^2(1-8x)≥0
∵(1+x)^2≥0
∴1-8x≥0 x≤1/8
1-2sin(A/2)sin(B/2)sin(C/2)≤1-2*(1/8)=3/4
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询