高数,用第二种换元积分法求。第二题
2个回答
展开全部
1、令x=asint,dx=acostdt
原式=∫a^3sin^2tcostdt/acost
=a^2*∫sin^2tdt
=(a^2/2)*∫(1-cos2t)dt
=(a^2/2)*[t-(sin2t)/2]+C
=(a^2/2)*arcsin(x/a)-(x/2)*√(a^2-x^2)+C,其中C是任意常数
3、令x=sint,dx=costdt
原式=∫costdt/(sint+cost)
令A=∫costdt/(sint+cost),B=∫sintdt/(sint+cost)
A+B=∫(sint+cost)dt/(sint+cost)=∫dt=t+C
A-B=∫(cost-sint)dt/(sint+cost)=∫d(sint+cost)/(sint+cost)=ln|sint+cost|+C
所以原式=A=(t+ln|sint+cost|)/2+C
=(1/2)*[arcsinx+ln|x+√(1-x^2)|]+C,其中C是任意常数
原式=∫a^3sin^2tcostdt/acost
=a^2*∫sin^2tdt
=(a^2/2)*∫(1-cos2t)dt
=(a^2/2)*[t-(sin2t)/2]+C
=(a^2/2)*arcsin(x/a)-(x/2)*√(a^2-x^2)+C,其中C是任意常数
3、令x=sint,dx=costdt
原式=∫costdt/(sint+cost)
令A=∫costdt/(sint+cost),B=∫sintdt/(sint+cost)
A+B=∫(sint+cost)dt/(sint+cost)=∫dt=t+C
A-B=∫(cost-sint)dt/(sint+cost)=∫d(sint+cost)/(sint+cost)=ln|sint+cost|+C
所以原式=A=(t+ln|sint+cost|)/2+C
=(1/2)*[arcsinx+ln|x+√(1-x^2)|]+C,其中C是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询