第六题求解,急!谢谢
6个回答
更多追问追答
追问
求解步骤,谢谢!
追答
分析:根据OD⊥EF,OA⊥AE,OA=OD,OE=OE,利用“HL”可证△ODE≌△OAE,则AE=ED,∠AOE=∠DOE,又∠AOE+∠COF=∠AOC-∠EOF=90°-45°=45°,∠DOE+∠DOF=∠EOF=45°,可证∠COF=∠DOF,且OD=OA=OC,证明△DOF≌△COF,得CF=DE,设正方形的边长为a,则BE=a-2,BF=a-3,EF=DE+DF=5,在Rt△BEF中,由勾股定理求a即可.
解答:解:设正方形的边长为a,
∵OD⊥EF,OA⊥AE,OA=OD,OE=OE,
∴△ODE≌△OAE(HL),
∴AE=ED=2,∠AOE=∠DOE,
又∵∠AOE+∠COF=90°-∠EOF=45°,∠DOE+∠DOF=∠EOF=45°,
∴∠COF=∠DOF,又OD=OA=OC,
∴△DOF≌△COF,
∴CF=DE=3,
∴BE=a-2,BF=a-3,EF=DE+DF=5,
在Rt△BEF中,BE^2+BF^2=EF^2,即(a-2)^2+(a-3)^2=5^2,
解得a=6.
故选B.
点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.
展开全部
图看不清,被你划乱了,重新画一个吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
能不能重新画一个图 照片拍大点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图不清楚,看不清楚。
如果让我做的话我选a。
如果让我做的话我选a。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是几年级的?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询