高等数学,求极限

 我来答
勤奋的知道行家
2015-12-17 · TA获得超过2954个赞
知道大有可为答主
回答量:2282
采纳率:0%
帮助的人:294万
展开全部
求极限的各种方法

1
.约去零因子求极限


1
:求极限
1
1
lim
4
1



x
x
x

【说明】
1

x
表明
1

x
无限接近,但
1

x
,所以
1

x
这一零因子可以约去。

【解】
6
)
1
)(
1
(
lim
1
)
1
)(
1
)(
1
(
lim
2
1
2
1










x
x
x
x
x
x
x
x
=4
2
.分子分母同除求极限


2
:求极限
1
3
lim
3
2
3




x
x
x
x

【说明】


型且分子分母都以多项式给出的极限
,
可通过分子分母同除来求。

【解】
3
1
3
1
lim
1
3
lim
3
1
1
3
2
3










x
x
x
x
x
x
x

【注】
(1)
一般分子分母同除
x
的最高次方;

(2)
























n
m
b
a
n
m
n
m
b
x
b
x
b
a
x
a
x
a
n
n
m
m
m
m
n
n
n
n
x
0
lim
0
1
1
0
1
1



3
.分子
(

)
有理化求极限


3
:求极限
)
1
3
(
lim
2
2





x
x
x

【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】
1
3
)
1
3
)(
1
3
(
lim
)
1
3
(
lim
2
2
2
2
2
2
2
2

















x
x
x
x
x
x
x
x
x
x

0
1
3
2
lim
2
2







x
x
x


4
:求极限
3
0
sin
1
tan
1
lim
x
x
x
x





【解】
)
sin
1
tan
1
(
sin
tan
lim
sin
1
tan
1
lim
3
0
3
0
x
x
x
x
x
x
x
x
x
x











4
1
sin
tan
lim
2
1
sin
tan
lim
sin
1
tan
1
1
lim
3
0
3
0
0











x
x
x
x
x
x
x
x
x
x
x

【注】
本题除了使用分子有理化方法外,
及时
分离极限式中的非零因子
...........
是解
题的关键

4
.应用两个重要极限求极限

两个重要极限是
1
sin
lim
0


x
x
x

e
x
n
x
x
x
n
n
x
x











1
0
)
1
(
lim
)
1
1
(
lim
)
1
1
(
lim
,第
一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。


5
:求极限
x
x
x
x










1
1
lim

【说明】第二个重要极限主要搞清楚凑的步骤:
先凑出1,再凑
X
1

,最后凑指
数部分。

【解】
2
2
2
1
2
1
2
1
1
2
1
1
1
lim
1
2
1
lim
1
1
lim
e
x
x
x
x
x
x
x
x
x
x
x
























































6

(1)
x
x
x









2
1
1
lim

(2)
已知
8
2
lim











x
x
a
x
a
x
,求
a


5
.用等价无穷小量代换求极限

【说明】

(1)
常见等价无穷小有:


0

x


,
~
)
1
ln(
~
arctan
~
arcsin
~
tan
~
sin
~
x
x
x
x
x
x

1
e
x

,


abx
ax
x
x
b
~
1
1
,
2
1
~
cos
1
2





(2)

等价无穷小量代换
,
只能代换极限式中的
因式
..


(3)
此方法在各种求极限的方法中
应作为首选
.....



7
:求极限
0
ln(1
)
lim
1
cos
x
x
x
x









0
0
2
ln(1
)
lim
lim
2
1
1
cos
2
x
x
x
x
x
x
x
x







.

8
:求极限
x
x
x
x
3
0
tan
sin
lim






x
x
x
x
3
0
tan
sin
lim


6
1
3
lim
3
1
cos
lim
sin
lim
2
2
2
1
0
2
0
3
0












x
x
x
x
x
x
x
x
x
x

6
.用罗必塔法则求极限


9
:求极限
2
2
0
)
sin
1
ln(
2
cos
ln
lim
x
x
x
x




【说明】



0
0
型的极限
,
可通过罗必塔法则来求。




2
2
0
)
sin
1
ln(
2
cos
ln
lim
x
x
x
x



x
x
x
x
x
x
2
sin
1
2
sin
2
cos
2
sin
2
lim
2
0






3
sin
1
1
2
cos
2
2
2
sin
lim
2
0













x
x
x
x
x

【注】许多变动上显的积分表示的极限,常用罗必塔法则求解


10

设函数
f(x)
连续,且
0
)
0
(

f
,求极限
.
)
(
)
(
)
(
lim
0
0
0





x
x
x
dt
t
x
f
x
dt
t
f
t
x





由于









0
0
0
)
(
)
)(
(
)
(
x
x
x
u
t
x
du
u
f
du
u
f
dt
t
x
f
,
于是












x
x
x
x
x
x
x
du
u
f
x
dt
t
tf
dt
t
f
x
dt
t
x
f
x
dt
t
f
t
x
0
0
0
0
0
0
0
)
(
)
(
)
(
lim
)
(
)
(
)
(
lim

=






x
x
x
x
xf
du
u
f
x
xf
x
xf
dt
t
f
0
0
0
)
(
)
(
)
(
)
(
)
(
lim
=




x
x
x
x
xf
du
u
f
dt
t
f
0
0
0
)
(
)
(
)
(
lim

=
)
(
)
(
)
(
lim
0
0
0
x
f
x
du
u
f
x
dt
t
f
x
x
x




=
.
2
1
)
0
(
)
0
(
)
0
(


f
f
f

7
.用对数恒等式求
)
(
)
(
lim
x
g
x
f
极限


11

极限
x
x
x
2
0
)]
1
ln(
1
[
lim








x
x
x
2
0
)]
1
ln(
1
[
lim



=
)]
1
ln(
1
ln[
2
0
lim
x
x
x
e



=
.
2
)
1
ln(
2
lim
)]
1
ln(
1
ln[
2
lim
0
0
e
e
e
x
x
x
x
x
x










】对于

1
型未定式
)
(
)
(
lim
x
g
x
f
的极限,也可用公式

)
(
)
(
lim
x
g
x
f
)
1
(

=
)
柏木各种爱
2017-04-02 · 超过10用户采纳过TA的回答
知道答主
回答量:14
采纳率:100%
帮助的人:11.2万
展开全部
看到这种类型一般是进行有理化,分子分母同时乘以根号下(x+m)(x+n)+x,进行化简之后就可以直接求极限了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式