展开全部
将sinx按泰勒级数展开:
sinx=x-x^3/3!+x^5/5!-x^7/7!+ …
于是sinx/x=1-x^2/3!+x^4/5!-x^6/7!+ …
令y=x^2,有sin√y/√y=1-y/3!+y^2/5!-y^3/7!+ …
而方程sinx=0的根为0,±π,±2π,…
故方程sin√y/√y=0的根为π²,(2π)²,…
即1-y/3!+y^2/5!-y^3/7!+…=0的根为π²,(2π)²,…
由韦达定理,常数项为1时,根的倒数和=一次项系数的相反数
即1/π²+1/(2π)²+…=1/3!
故1+1/2²+1/3²+ … =π²/6
sinx=x-x^3/3!+x^5/5!-x^7/7!+ …
于是sinx/x=1-x^2/3!+x^4/5!-x^6/7!+ …
令y=x^2,有sin√y/√y=1-y/3!+y^2/5!-y^3/7!+ …
而方程sinx=0的根为0,±π,±2π,…
故方程sin√y/√y=0的根为π²,(2π)²,…
即1-y/3!+y^2/5!-y^3/7!+…=0的根为π²,(2π)²,…
由韦达定理,常数项为1时,根的倒数和=一次项系数的相反数
即1/π²+1/(2π)²+…=1/3!
故1+1/2²+1/3²+ … =π²/6
2011-03-24
展开全部
教你的方法就是,将分母扩大,
n(n+1)>n>n(n-1)
n(n+1)>n>n(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询