求一个函数的极限!

求1+1/(2^2)+1/(3^2)+......+1/(n^2)的极限,要步骤!... 求1+1/(2^2)+1/(3^2)+......+1/(n^2)的极限,要步骤! 展开
alpeak008
2011-03-24 · TA获得超过316个赞
知道小有建树答主
回答量:169
采纳率:0%
帮助的人:58.2万
展开全部
将sinx按泰勒级数展开:
sinx=x-x^3/3!+x^5/5!-x^7/7!+ …
于是sinx/x=1-x^2/3!+x^4/5!-x^6/7!+ …
令y=x^2,有sin√y/√y=1-y/3!+y^2/5!-y^3/7!+ …
而方程sinx=0的根为0,±π,±2π,…
故方程sin√y/√y=0的根为π²,(2π)²,…
即1-y/3!+y^2/5!-y^3/7!+…=0的根为π²,(2π)²,…
由韦达定理,常数项为1时,根的倒数和=一次项系数的相反数
即1/π²+1/(2π)²+…=1/3!
故1+1/2²+1/3²+ … =π²/6
匿名用户
2011-03-24
展开全部
教你的方法就是,将分母扩大,
n(n+1)>n>n(n-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式