已知:抛物线y=-x²+2x+m-1与x轴有两个交点A,B (1)求m的取值范围(2)如果点A坐标为

(-1,0),求此时抛物线的解析式,并写出点C的坐标(3)在第2小题中的抛物线上是否存在一点P(与点C不重合),使S△PAB=S△CAB,若存在,求出点P的坐标;若不存在... (-1,0),求此时抛物线的解析式,并写出点C的坐标(3)在第2小题中的抛物线上是否存在一点P(与点C不重合),使S△PAB=S△CAB,若存在,求出点P的坐标;若不存在,说明理由 展开
19835566
2011-03-24 · TA获得超过10.8万个赞
知道大有可为答主
回答量:5350
采纳率:0%
帮助的人:2924万
展开全部
1.
△=4+4(m-1)>0
m>0
2.
把(-1,0)代入得
-1-2+m-1=0
m=4
所以抛物线为y=-x²+2x+3
顶点C(1,4)
3.
∵△PAB和△CAB同底 (AB为底)
∴使S△PAB=S△CAB时,△PAB和△CAB必须等高才行
即点C和点P的纵坐标的绝对值相等
∴|Yp|=|Yc|=4
∵点P、点C不重合
∴Yp≠Yc,即Yp≠4
∴Yp=-4
代入抛物线方程得
-4=-x²+2x+3
x=1±2√2
∴点P坐标为(1-2√2,-4)或(1+2√2,-4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式