求I(x)=∫te^(-t^2)dt的极值。上限是x下限是0

详细过程~... 详细过程~ 展开
hyr_117
2011-03-24
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
先求积分,用凑微分法,把积分变量凑为-t^2,同时上限换为-x^2,下限不动,被积函数为-(1/2)e^(-t^2),把-t^2看成整体,换个变量,求得积分为-(1/2)e^(-x^2),再求导为I'(x)=xe^(-x^2),所以小于零递减,大于零递增,所以在x=0处取的极小值为零。无极大值
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式