等比数列前n项和

 我来答
内蒙古恒学教育
2022-11-09 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
Sn=[a1*(1-q^n)]/(1-q)为等比数列而这里n为未知数可以写成F(n)=[a1*(1-q^n)]/(1-q)当q=1时为常数列也就是n个a1相加为n*a1。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
注:q=1时,an为常数列。即a^n=a。
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。
匿名用户
2016-04-07
展开全部

.前n项和公式

若数列{an}是公比为q的等比数列,则它的前n项和公式是

也就是说,公比为q的等比数列的前n项和是q的分段函数,分段的界限在q=1处.

当q≠1时,求等比数列前n项和Sn的方法一般是利用Sn的表达式的特点,首先在Sn=a1+a1q+…+a1qn-1两边同乘以该数列的公比q,使得等式右边各项都向右错了一位;然后通过求Sn-qSn把相同的项消去,达到简化的目的;最后从中解出Sn.这种方法(俗称“错位相减法”)很巧妙,而且对这类数列的求和具有普遍性,应该很好地掌握它.

求等比数列前n项和的方法还有一些,下面再介绍其中的一种:

当q=1时,Sn=na1

当q≠1时,

Sn=a1+a1q+a1q2+…+a1qn-1

    =a1+q(a1+a1q+a1q2+…+a1qn-1)-a1qn

    =a1+q·Sn-a1qn

    =a1(1-qn)+q·Sn

∴(1-q)Sn=a1(1-qn),

∴Sn=.

在具体运用等比数列前n项和公式时如果考虑不周常会出错.例如,求和:1+x+x2+…+xn,认为其和为是错误的.

 

【重点难点解析】

本节重点是等比数列前n项和公式及其应用.难点是求和公式的推导.等比数列前n项和公式要注意对公比q进行讨论,分q=1和q≠1两种情况.求等比数列前n项和的思想和方法在求一些特殊数列的前n项和中经常运用到.

例1  设等比数列{an}的前n项和为Sn,若

S3+S6=2S9,求公比q的值.

分析  本题主要考查等比数列求和公式的基础知识,逻辑推理能力和运算能力.在求解中要全面考虑公式q=1和q≠1两种情况,否则就会造成失误.

解法一:若q=1,则S3+S6=3a1+6a1=9a1≠2S9,

所以q≠1.依等比数列前n项和公式有

+=,

整理得q3(2q6-q3-1)=0.

因为q≠0,所以2q6-q3-1=0,

(q3-1)(2q3+1)=0.

因为q≠1,所以q3≠1,所以q3=-,

q=-=-.

解法二:因为S3+S6=2S9,所以

2(a1+a2+a3)+a4+a5+a6=2(a1+a2+a3+…+a9),

此即-(a4+a5+a6)=2(a7+a8+a9),

-(a4+a5+a6)=2q3(a4+a5+a6),

由此解得q3=-,q=-.

评析  在对等比数列前n项和公式的运用中,要注意充分运用整体代入的方法,如解法二中就利用了a7+a8+a9=q3(a4+a5+a6)这一性质,使运算量减少,也避免了q的讨论.

例2  设等比数列的首项为a(a>0)公比为q(q>0),前n项和为80,其中最大的一项为54,又它的前2n项和为6560,求a和q.

解:由Sn=80,S2n=6560,故q≠1

化简得

 

∴有③

  知

 

∵a>0,q>1,等比数列递增数列,故前n项中最大项为an.

∴an=aqn-1=54             ④

将③代入①化简得a=q-1   ⑤

化简得3a=2q         ⑥

由⑤,⑥联立方程组解得a=2,q=3

例3  等比数列{an}的前n和等于2,紧接其后的2n项和等于12,再紧接其后的3n项和为S,求S.

分析  本题主要考查等比数列前n项和公式的应用.本题实际为已知Sn=2,S3n-Sn=12,要求S6n-S3n的值.由等比数列知,前n项成等比数列,紧接其后的2n项也成等比数列,再紧接的3n项也成等比数列,可分别求和列方程.

解:在等比数列中,依次每k项之和仍成等比数列.设前n项和为S1,第2个n项和为S2=S1q,

由②式得q+q2=6,所以q=2或q=-3.

将q=2代入③式得S=112,将q=-3代入③式得S=-378.

例4  求数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…(a≠0)的前n项和Sn.

分析  要求数列前n项的和,必须先求出数列的通项公式.

解:据题设条件分析可知:

an=an-1+an+an+1+…+a2n-2

①当a=1时,an=n,∴Sn=.

②当a≠1时,Sn==-.

(1)当a≠±1时,Sn=[-]

=[(1-an)(1-an+1)]

(2)当a=-1时,Sn=[+n]

评析  ①由于通项公式本身是一个等比数列的求和,而公比是字母a,故必须分两种情况(a=1及a≠1)来讨论.

②在进一步求和时,由于又出现公比为a2的等比数列求和,故又得分a2=1及a2≠1来讨论,由于a=1已讨论,因此本题应分a=1,a=-1,a≠±1三种情况来讨论.

 

【难题巧解点拨】

例1  设等比数列{an}的公比与前n项和分别为q与Sn,且q≠1,S10=8.求的值.

分析  一个条件不能确定a1与q.不妨将S10与S20用a1、q表示出来,进行对比,兴许有点门道.

解:∵=8,

∴==8.

评析  一些数列问题中的基本量难以确定或不能确定时,不妨设而不求,整体代换.其实,本题尚有以下巧解:

S20=S10+a11+a12+…+a20

=S10+q10S10=S10(1+q10),

故=S10=8.

例2  设等比数列{an}的前n项和为Sn,求证:S2n+S22n=Sn(S2n+S3n).

分析  从整体结构入手,寻找Sn、S2n、S3n之间的关系,作差计算,不仅简便,而且求解过程完备.

解:设{an}的公比为q,则

S2n=Sn+qnSn=Sn(1+qn)

S3n=Sn+qnSn+q2nSn=Sn(1+qn+q2n)

∴S2n+S22n-Sn(S2n+S3n)

=S2n+S2n(1+qn)2-S2n[(1+qn)+(1+qn+q2n)]

=S2n+S2n(1+qn)2-S2n[1+(1+qn)2]

=0

∴S2n+S22n=Sn(S2n+S3n).

评析  本题的结论是等比数列的又一性质:(S2n-Sn)2=Sn(S3n-S2n),即Sn,S2n-Sn,S3n-S2n成等比数列.

例3  已知数列{an}满足条件:a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列.设bn=a2n-1+a2n,求数列{bn}的前n项和Sn.

分析  =q=q=q.

解:∵=q       ∴an+2=anq,

∴===q,

且q≠0,b1=1+r≠0

∴{bn}是首项为1+r,公比为q的等比数列,

评析  解题的关键是等比数列{bn}的发现,只要紧抓等比数列的定义来分析,就能使隐含着的条件显露出来,促成问题的快速解决.



希望能帮到你,满意望采纳哦。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冯滢虎照
2019-06-22 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:902万
展开全部
首先,你用等比数列前N项和,前提就是Q不等于-1,然后,若Q=-1,则为摆动数列,即正负交替,比如2,-2,2,-2,2,-2……Sn=0,S2n=0,S3n=0,成立啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
水元修后香
2019-04-02 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:1212万
展开全部
解:由等比数列可得
a1=1,a4=1x(q)^(4-1)=1/8
解:q=1/2
所以首项为1,公比为1/2的等比数列,
sn=(1-1/2^n)/(1-1/2)
所以带入sn公式可得sn=[1(1-1/2^10)]/(1-1/2)=2-1/512=1023/512
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
雅默幽寒
2016-04-07 · TA获得超过24.3万个赞
知道顶级答主
回答量:5.6万
采纳率:83%
帮助的人:7520万
展开全部
Sn=[a1*(1-q^n)]/(1-q) 为等比数列 而这里n为未知数 可以写成F(n)=[a1*(1-q^n)]/(1-q) 当q=1时 为常数列 也就是 n个a1相加为
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式