已知a>0,函数f(x)=lnx-ax.(1)设曲线y=f(x)在点(1,f(1))处的切线L,若L与圆(x+1) 2 +y 2 =1相切,求a的值
已知a>0,函数f(x)=lnx-ax.(1)设曲线y=f(x)在点(1,f(1))处的切线L,若L与圆(x+1)2+y2=1相切,求a的值(2)求f(x)的单调区间;(...
已知a>0,函数f(x)=lnx-ax.(1)设曲线y=f(x)在点(1,f(1))处的切线L,若L与圆(x+1) 2 +y 2 =1相切,求a的值(2)求f(x)的单调区间;(3)求函数f(x)在(0,1]上的最大值
展开
1个回答
展开全部
f(x)=lnx-ax
f'(x)=1/x-a
f'(1)=k=1-a
f(1)=ln1-a=-a
所以切线L方程是y+a=(1-a)(x-1)=x-1-ax+a
y=(1-a)x-1
把y=(1-a)x-1代入圆方程得
(x+1)^2+((1-a)x-1)^2=1
x^2+2x+1+(1-a)^2x^2-2(1-a)x+1=1
(1+(1-a)^2)x+(2-2+2a)x+1=0
(1+(1-a)^2)x+2ax+1=0
因为相切,所以用判别式
△=b^2-4ac=0
4a^2-4(1+(1-a)^2))*1=0
a^2-(1+1-2a+a^2)=0
a^2-2+2a-a^2=0
a=1
(2)
f(x)=lnx-x
f'(x)=1/x-1=(1-x)/x
当0<x<1时 f'(x)>0
所以区间(0,1]为增区间
当x<0或x>1时 f'(x)<0
所以在区间(-∞,0)∪[1,+∞)时为减区间
(3)
因为f(x)区间(0,1]为增区间
所以最大值f(1)=ln1-1=-1
f'(x)=1/x-a
f'(1)=k=1-a
f(1)=ln1-a=-a
所以切线L方程是y+a=(1-a)(x-1)=x-1-ax+a
y=(1-a)x-1
把y=(1-a)x-1代入圆方程得
(x+1)^2+((1-a)x-1)^2=1
x^2+2x+1+(1-a)^2x^2-2(1-a)x+1=1
(1+(1-a)^2)x+(2-2+2a)x+1=0
(1+(1-a)^2)x+2ax+1=0
因为相切,所以用判别式
△=b^2-4ac=0
4a^2-4(1+(1-a)^2))*1=0
a^2-(1+1-2a+a^2)=0
a^2-2+2a-a^2=0
a=1
(2)
f(x)=lnx-x
f'(x)=1/x-1=(1-x)/x
当0<x<1时 f'(x)>0
所以区间(0,1]为增区间
当x<0或x>1时 f'(x)<0
所以在区间(-∞,0)∪[1,+∞)时为减区间
(3)
因为f(x)区间(0,1]为增区间
所以最大值f(1)=ln1-1=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询