植物群落分析的植物群落的数值分类
群落分类的基本单位是样地(或样方),即群落实体。群落的内涵特征描述项目,如种类组成、种的频度、多度或显著度等的数值,即反映实体属性的信息。数值分类一般是按属性的相似或相异程度,将所有样地(或样方)集合分成若干个“同质的”样地(样方)组,使组内的成员尽可能地相似,不同组的成员尽可能地相异。即按群落所包含的各个属性、或规定的各项属性的变异幅度来分类。这些“同质”的样方组,可以是等级的分类类级(如传统分类的群丛,群属,群目,群系等),也可以是非等级的类级(统称为植物群落型)。通常按属性分类,用样方间的矩阵CN,称为正分析,或R分析方法。但也有用属性或种间矩阵CP的,称为逆分析,或Q分析方法。分类的方法程序有二大类,即聚合分类,或分划分类。
等级聚合的分类 根据群落样地(样方)彼此间的相似程度,通过逐次合并,成为不同等级的“同质”样方组,或聚簇(Clustor)的分类方法,也叫聚簇分析。等级聚合程序最早被切卡诺夫斯基(1909)用于人类学资料的分类,以后才被波兰生态学家专门用于植被分类。
群落的聚簇分析,是多元的聚合方法。因为,群落样地或样方的N×N相似(异)系数矩阵CN是进行聚合的基础。无论哪一种相似(异)系数,其数值都是从所有属性的数据计算而来。聚合的程序一般是:①计算样地(样方)的N×N相似(异)系数矩阵CN;②先从CN中找出最相似的一对样地(方)合并为第一个聚簇;③重算(N-1)×(N-1)的相似(异)矩阵;④再从中找出与第一次合并聚簇最相似的另一个样地,并合并出另一个聚簇;⑤依次,重复逐次合并,直到全部样地合并为一。简言之,即从单个样方开始聚合,再是聚簇与单个样方、或与另外聚簇的聚合,自下而上直到把整个样方集合聚合为一体,结果是产生一个逐级聚合分析的枝谱图。
等级聚合过程中,有一个如何测算两个聚簇之间的距离的问题。需要一个适合的测度Dkij,表示k聚簇到i和j联合聚簇之间距离。通常应用的七种聚合方法是:最近邻法;最远邻法;中线法;形心法;组平均法;平方和增量法;可变法等。兰斯和威廉斯(1967)为这些计算群簇距离的不同聚合方法,建立了一个统一的模型。
DCA+B=XADCA+2BDCB+βDCA+γ|DCA-DCB|
其中A,B,C,A+B均表示样方组(群簇)。它们的样方数分别为nA,nB,nC,nA+B,A+B是 A与 B的并组,有nA+B=nA+nB。2A,2B,β,γ是常数(模型系数)。
威廉斯和兰伯特(1966)提出的信息分析方法,用对称信息相似系数,即以样方组合并引起的信息增量ΔI,作为A与B样方组间的相异性指标,将信息增量最小的成对群簇加以合并,其计算式为
ΔI(A,B)=I(A+B)-I(A)-IB
等级划分的分类 是从N个样地(方)的集合开始,从上向下逐次分划。即先按相似性分为二个样方组,使组内相似性最大,组间相异性最大。接着对每个组再次分划,最终达到一定要求的“同质”样方组为止。
等级分划有单元和多元二类,现时通行的多为单元分划方法。如关联分析、组群分析和信息分析等方法。在群落数值分类中最常用的是关联分析方法。
关联分析,是基于在某个一致的群落中不同样方之间种类是不相关的,即二种间的关联是随机的,因而可把种间关系最小的一些样方,从样方集合中分划出来,作为一个类级。
关联分析的程序是:①依据二元(种的存在与不存在)原始数据矩阵X,求出P个种的种间关联系数矩阵CP=(Chi),(h,i=1,2,…,P);②从种的关联矩阵中找出一个与其他种关联最大的种A,称为临界种或关键种。③在样方集合中把含有临界种A的样方组(A),与不含临界种的样方(a)划分开成二个子样方组;④对(A)分别重复上面的程序,确定另一个临界种B,按B种的有或无,从A中划分出有B种存在的B样方组。如此反复进行,直到在分出的子组内部种间关联系数全都在规定的显著水平以下,即达到划分过程的“终止线”为止。⑤最后,也可得到等级划分分类的树谱图(图4)。图中横坐标表示两条终止线的两个显著水平,纵坐标表示各次分划的X2/N的临界值和分划的过程。每一次分划的两支联结线下的植物种是该次分划的临界种,(+)号表示含有该临界种的样方组,样方数在方框内;(-)号表示无临界种的样方组,样方数记在方框内。
2024-08-28 广告