
已知函数f(X)=sinxcosx+cosx的平方,求f(X)的值域
1个回答
展开全部
f(x)=sinxcosx+cos^2 x
=1/2sin2x+1/2cos2x-1/2
=√2/2(sin2x*√2/2+cos2x*√2/2)-1/2
=√2/2sin(2x+π/4)-1/2
因为-1<=sin(2x+π/4)<=1
所以-√2/2<=√2/2sin(2x+π/4)<=√2/2
-√2/2-1/2<=√2/2sin(2x+π/4)-1/2<=√2/2-1/2
所以f(x)的值域是[-√2/2-1/2,√2/2-1/2]
=1/2sin2x+1/2cos2x-1/2
=√2/2(sin2x*√2/2+cos2x*√2/2)-1/2
=√2/2sin(2x+π/4)-1/2
因为-1<=sin(2x+π/4)<=1
所以-√2/2<=√2/2sin(2x+π/4)<=√2/2
-√2/2-1/2<=√2/2sin(2x+π/4)-1/2<=√2/2-1/2
所以f(x)的值域是[-√2/2-1/2,√2/2-1/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询