在四边形ABCD中,AD//BC,AB=DC,AC与BD相交于点O,∠BOC=120°,AD=7,BD=10,求四边形ABCD的面积

平行四边形的解法初中知识... 平行四边形的解法 初中知识 展开
百度网友3090e3741
2011-03-28 · TA获得超过2916个赞
知道小有建树答主
回答量:401
采纳率:0%
帮助的人:253万
展开全部

(一)如果是平行四边形

根据题意,有:

AD = 7,OD = OB = 1/2 BD = 5

∠AOD = ∠BOC = 120°

在ΔAOD中,根据余弦定理:

AD² = AO² + DO² - 2 AO•DO cos∠AOD

AO²+ 25 + 5 AO =49

AO² + 5 AO – 24 = 0

解得:AO = 3  或 AO = -8

舍去负数,取AO = 3

过A点向BD做垂线AE,交BD于E点

AE = AO cos∠AOB = 3 • (√3)/2 = (3/2) √3

所以:

SΔABD = AE • BD / 2 =  (3/2) √3 • 10 / 2 = (15/2) √3

S(ABCD) = 2 SΔABD = (15/2) √3 • 2 = 15√3

(二)如果是等腰梯形

如图,不难发现:

 ∠DAC = ∠ACB = ∠DBC = 30°

AD = 7

 AC = BD = 10

在ΔADC中,根据余弦定理

 DC² = AD² + AC² - 2 AD • AC cos∠DAC = 49 + 100 – 2 • 7 • 10 • (√3)/2 = 149 - 70√3

过点D作BC的垂线DE,交BC于E

在RtΔBDE中DE = BD • sin∠DBC = 10 / 2 = 5

在RtΔCDE中,EC² = DC² - ED² = 149 - 70√3 – 25 = 124 - 70√3 = 25 • 3 - 2 • (5√3) • 7 + 49 = (5√3 - 7) ²

所以EC = 5√3 – 7

所以BC = AD + 2EC = 10√3 – 14 + 7 = 10√3 – 7

所以S(ABCD) = (1/2) (BC + AD) • ED = (1/2) (10√3 – 7 + 7) • 5             = 25√3

lim0619
2011-03-26 · TA获得超过8.3万个赞
知道大有可为答主
回答量:1.7万
采纳率:84%
帮助的人:5986万
展开全部
由AD‖BC,AB=CD,
(1)四边形可能是等腰梯形。
过D作DE⊥BC于E,
∵∠BOC=120°,∴∠DBC=30°。
又BD=10,∴高DE=5,
BE=5√3,CE=5√3-7,
梯形面积S=(7+5√3+5√3-7)×5÷2=25√3,
(2)四边形可能是平行四边形。
过D作DE⊥BC交BC延长线上,
由BD=10,∠DBE=30°,
∴DE=5,
平行四边形ABCD面积S=BC×DE=7×5=35.
我不知道你需要哪个答案,所以都做出,供参考。
追问
,∠DBE=30°,
解释一下
答案是15√3
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活答疑的企鹅
2012-08-04
知道答主
回答量:13
采纳率:0%
帮助的人:1.7万
展开全部
解:过点D作DE∥AC交BC的延长线于点E,DF⊥BC于F
∵DE∥AC,AD∥BC
∴四边形ACDE为平行四边形
∴DE=AC=BD
∴三角形BDE是等腰三角形
∵∠BOC=120°
∴∠BDE=120°
∴∠OBC=∠OCB=30°
∴DF=12BD=5,BF=32BD=53,BE=2BF=103.
∵AB=DC,BD=DE,∠DEC=∠BDA
∴△ABD≌△CDE
∴根据梯形的面积等于三角形BDE的面积,即12×103×5=253.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友daf3edc
2011-03-26 · TA获得超过109个赞
知道答主
回答量:102
采纳率:0%
帮助的人:76.1万
展开全部
这个图形是等腰梯形或者是平行四边形
追问
解法 啊  平行四边形我不会啊
追答
等腰梯形的话,boc这个三角形就是等腰三角形(自己证明),顶角120度
同样的aod也是等腰三角形,aod这个角也是120度(对顶角)
知道ad等于7的话,aod这个三角形三边就知道了,当然包括高(这个等腰三角形只要一作高,啥事都知道了)
由此bo也就知道了(bo=bd-od)
在三角形boc中,也就能求出它的高了,同时能求出bc这条边
梯形的高是这两个等腰三角形高之和
然后用公式吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式