两道高数微分方程题,求详细过程!求高手指教啊!!
2个回答
展开全部
1。(y^4-3x²)dy+xydx=0
解:显然,y=0是原方程的解
于是,设x=ty² (y≠0),则dx=y²dt+2tydy
代入原方程得(y^4-3t²y^4)dy+ty³(y²dt+2tydy)=0
==>(1-t²)dy+tydt=0
==>tdt/(t²-1)=dy/y
==>1/2[1/(t-1)-1/(t+1)]dt=dy/y
==>ln│(t-1)/(t+1)│=2ln│y│+ln│C│ (C是积分常数)
==>(t-1)/(t+1)=Cy²
==>(x-y²)/(x+y²)=Cy²
∴原方程的通解是y=0与(x-y²)/(x+y²)=Cy² (C是积分常数);
2。y³dx+2(x²-xy²)dy=0
解:显然,y=0是原方程的解
于是,设x=ty² (y≠0),则dx=y²dt+2tydy
代入原方程得y³(y²dt+2tydy)+2(t²y^4-ty^4)dy=0
==>ydt+2t²dy=0
==>2dy/y=-dt/t²
==>2ln│y│=1/t+ln│C│ (C是积分常数)
==>y²=Ce^(1/t)
==>y²=Ce^(y²/x)
∴原方程的通解是y=0与y²=Ce^(y²/x) (C是积分常数)。
解:显然,y=0是原方程的解
于是,设x=ty² (y≠0),则dx=y²dt+2tydy
代入原方程得(y^4-3t²y^4)dy+ty³(y²dt+2tydy)=0
==>(1-t²)dy+tydt=0
==>tdt/(t²-1)=dy/y
==>1/2[1/(t-1)-1/(t+1)]dt=dy/y
==>ln│(t-1)/(t+1)│=2ln│y│+ln│C│ (C是积分常数)
==>(t-1)/(t+1)=Cy²
==>(x-y²)/(x+y²)=Cy²
∴原方程的通解是y=0与(x-y²)/(x+y²)=Cy² (C是积分常数);
2。y³dx+2(x²-xy²)dy=0
解:显然,y=0是原方程的解
于是,设x=ty² (y≠0),则dx=y²dt+2tydy
代入原方程得y³(y²dt+2tydy)+2(t²y^4-ty^4)dy=0
==>ydt+2t²dy=0
==>2dy/y=-dt/t²
==>2ln│y│=1/t+ln│C│ (C是积分常数)
==>y²=Ce^(1/t)
==>y²=Ce^(y²/x)
∴原方程的通解是y=0与y²=Ce^(y²/x) (C是积分常数)。
追问
谢谢啊.....但给的答案是:Cy^6=x^2-y^4 (C为积分常数)
y^2=2xln│y│+x (C为积分常数)
展开全部
dx/dy+(y^4-3x^2)/xy=0
dx/dy+y^3/x-3x/y=0
设x/y=u,则x=yu
u+ydu/dy+y^2/u-3u=0
du/dy+y/u-2u/y=0
设u/y=t,则u=yt
t+ydt/dy+1/t-2t=0
dy/y=dt/(t-1/t)
C1+lny=ln(t^2-1)^1/2
C2y^2=y^2-1
将t,u代入得
Cy^6=x^2-y^4 (C1C2C是积分常数)
dx/dy+2(x^2-xy^2)/y^3=0
dx/dy+2x^2/y^3-2x/y=0
设x/y=u则x=yu
u+ydu/dy+2u^2/dy-u/y=0
设u/y=t则u=yt
t+ydt/dy+2t^2-t=0
dt/dy+2t^2/y=0
-dt/2t^2=dy/y
1/2t=lnY+C1 (Y为y的绝对值,C1为积分常数)
把u,t代入得
y^2/2x=lnY+C1
dx/dy+y^3/x-3x/y=0
设x/y=u,则x=yu
u+ydu/dy+y^2/u-3u=0
du/dy+y/u-2u/y=0
设u/y=t,则u=yt
t+ydt/dy+1/t-2t=0
dy/y=dt/(t-1/t)
C1+lny=ln(t^2-1)^1/2
C2y^2=y^2-1
将t,u代入得
Cy^6=x^2-y^4 (C1C2C是积分常数)
dx/dy+2(x^2-xy^2)/y^3=0
dx/dy+2x^2/y^3-2x/y=0
设x/y=u则x=yu
u+ydu/dy+2u^2/dy-u/y=0
设u/y=t则u=yt
t+ydt/dy+2t^2-t=0
dt/dy+2t^2/y=0
-dt/2t^2=dy/y
1/2t=lnY+C1 (Y为y的绝对值,C1为积分常数)
把u,t代入得
y^2/2x=lnY+C1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询