如图,在△ABC中,∠ABC=∠ACB,CF⊥AB,若P为直线BC上的一点,过点P作PD⊥AB,PE⊥AC,D、E分别为垂足.

如图,在△ABC中,∠ABC=∠ACB,CF⊥AB,若P为直线BC上的一点,过点P作PD⊥AB,PE⊥AC,D、E分别为垂足.(1)如图1,若P为底边BC上的一点,试探究... 如图,在△ABC中,∠ABC=∠ACB,CF⊥AB,若P为直线BC上的一点,过点P作PD⊥AB,PE⊥AC,D、E分别为垂足.
(1)如图1,若P为底边BC上的一点,试探究线段PD、PE、CF间的数量关系;
(2)如图2,若P为底边BC延长线上的一点,(1)中的结论还成立吗?若成立,请说明理由;若不成立,请探究新的数量关系;
(3)若△ABC为等边三角形,改变点P的位置并记P到第三边距离为PM,你还有其他新的发现吗?请说一说.
展开
爱笑熙熙
2011-03-26 · 超过12用户采纳过TA的回答
知道答主
回答量:46
采纳率:0%
帮助的人:27.9万
展开全部
证明:(1)作PM⊥CF,则四边形PDFM是矩形,即PD=FM.
再根据AAS证明△PMC≌△PEC,得CM=PE,
∴PD+PE=CF;

(2)PD-PE=CF;
证明如下:
作CM⊥PD于M,得四边形CMDF是矩形,则CF=DM
同(1)中的证明方法相同证明△PCM≌△PCE,则PM=PE
∴PD-PE=CF.
s1...0@163.com
2011-03-26 · TA获得超过354个赞
知道答主
回答量:37
采纳率:0%
帮助的人:23.4万
展开全部
证明:1.作PM⊥CF,则四边形PDFM是矩形,即PD=FM.
再根据AAS证明△PMC≌△PEC,得CM=PE,
∴PD+PE=CF

参考资料: 给我分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wanghuizuibang
2011-03-26
知道答主
回答量:10
采纳率:0%
帮助的人:0
展开全部
图1中PD+PE=CF,图2中PD-PE=CF,改变p位置有PD+PE+PM=CF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
元帅8
2011-03-27 · 贡献了超过122个回答
知道答主
回答量:122
采纳率:0%
帮助的人:35.7万
展开全部
证明:1.作PM⊥CF,则四边形PDFM是矩形,即PD=FM.再根据AAS证明△PMC≌△PEC,得CM=PE,∴PD+PE=CF 是这样的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式