初二2道分解因式难题(要有过程)
11-2²+3²-4²+5²-6²+.......+99²-100²2(2+1)(2²+1...
1 1-2²+3²-4²+5²-6²+.......+99²-100²
2 (2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1 展开
2 (2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1 展开
7个回答
展开全部
1 1-2²+3²-4²+5²-6²+.......+99²-100²
=(1+2)(1-2)+(3+4)(3-4)+(5+6)(5-6)+······+(99+100)(99-100)
=-1(1+2+3+4+5+6+······+99+100)
=-1×(1+100)×100÷2
=-1×101×50
=-5050
2 (2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2-1)(2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)÷(2-1)+1
=(2²-1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)÷1+1
=(2的4次幂-1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2的8次幂-1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2的16次幂-1)(2的16次幂+1)(2的32次幂+1)+1
=(2的32次幂-1)(2的32次幂+1)+1
=2的64次幂-1+1
=2的64次幂
=(1+2)(1-2)+(3+4)(3-4)+(5+6)(5-6)+······+(99+100)(99-100)
=-1(1+2+3+4+5+6+······+99+100)
=-1×(1+100)×100÷2
=-1×101×50
=-5050
2 (2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2-1)(2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)÷(2-1)+1
=(2²-1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)÷1+1
=(2的4次幂-1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2的8次幂-1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2的16次幂-1)(2的16次幂+1)(2的32次幂+1)+1
=(2的32次幂-1)(2的32次幂+1)+1
=2的64次幂-1+1
=2的64次幂
展开全部
1、原式=(1+2)*(1-2)+(3+4)*(3-4)......+(99+100)*(99-100)
=-1*(1+2+3+4+......+99+100)
=-5050
2、原式=[(2-1)(2+1)(2²+1)......(2^32+1)+(2-1)]/(2-1)
=2^64-1+1
=2^64
=-1*(1+2+3+4+......+99+100)
=-5050
2、原式=[(2-1)(2+1)(2²+1)......(2^32+1)+(2-1)]/(2-1)
=2^64-1+1
=2^64
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)
1-2²+3²-4²+5²-6²+.......+99²-100²
=(1-2²)+(3²-4²)+(5²-6²)+.......+(99²-100²)
=(1-2)(1+2)+(3-4)(3+4)……(99-100)(99+100)
=-(1+2+3+4+...+99+100)
=-5050
2 (2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^32-1)(2^32+1)+1
=2^64
提示:运用平方差公式(a^2-b^2)=(a+b)(a-b)
1-2²+3²-4²+5²-6²+.......+99²-100²
=(1-2²)+(3²-4²)+(5²-6²)+.......+(99²-100²)
=(1-2)(1+2)+(3-4)(3+4)……(99-100)(99+100)
=-(1+2+3+4+...+99+100)
=-5050
2 (2+1)(2²+1)(2的4次幂+1)(2的8次幂+1)(2的16次幂+1)(2的32次幂+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^32-1)(2^32+1)+1
=2^64
提示:运用平方差公式(a^2-b^2)=(a+b)(a-b)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1:(1-2)(1+2)+(3-4)(3+4)……(99-100)(99+100)=-1*(1+2+3。。。)
2:前面再写一项(2-1),用平方差公式逐项算
ok?
2:前面再写一项(2-1),用平方差公式逐项算
ok?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)原式=-[(2²-1)+(4²-3²)+(6²-5²)+.......+(100²-99²)]
=-[3+7+11+……+199]
=-[(3+199)×50÷2]
=-5050
2)原式=[(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1]×(2-1)
=[(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1]
=[(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1]
=[(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1]
=[(2^16-1)(2^16+1)(2^32+1)+1]
=[(2^32-1)(2^32+1)+1]
=[(2^64-1)+1]
=2^64
=-[3+7+11+……+199]
=-[(3+199)×50÷2]
=-5050
2)原式=[(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1]×(2-1)
=[(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1]
=[(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1]
=[(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1]
=[(2^16-1)(2^16+1)(2^32+1)+1]
=[(2^32-1)(2^32+1)+1]
=[(2^64-1)+1]
=2^64
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 (1+2)(1-2)+(3+4)(3-4)····(99-100)(99+100)=-(1+2+3+...+100)=(1+100)*50{101乘以50}=-5050
2 应该是2的64次幂 直接写这个数就行 不用真算出来
2 应该是2的64次幂 直接写这个数就行 不用真算出来
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询