f(x)是R上的函数,对于任意实数a,b,都有f(ab)=af(b)+bf(a),且f(2)=1。
f(x)是R上的函数,对于任意实数a,b,都有f(ab)=af(b)+bf(a),且f(2)=1。(1)求f(1),f(1/2)的值(2)令bn=f[2^(-n)],即2...
f(x)是R上的函数,对于任意实数a,b,都有f(ab)=af(b)+bf(a),且f(2)=1。
(1)求f(1),f(1/2)的值
(2)令bn=f[2^(-n)],即2的-n次方,求证:{2^n•bn}为等差数列
(3)求{bn}的通项公式 展开
(1)求f(1),f(1/2)的值
(2)令bn=f[2^(-n)],即2的-n次方,求证:{2^n•bn}为等差数列
(3)求{bn}的通项公式 展开
展开全部
(1)令b=1则有f(a)=f(a)+af(1),由于a为任意实数,得到f(1)=0
令a=2,b=0.5则有f(1)=2f(0.5)+0.5f(2)得到f(0.5)=-1/4
(2)对任意n,有2^(n+1)•b(n+1)-2^n•bn=2^(n+1)•f[2^(-n-1)]-2^n•f[2^(-n)]=2^(n+1)•f[2^(-n-1)]-2^n•{f[2^(-n-1)•2]}=2^(n+1)•f[2^(-n-1)]-2^n{2^(-n-1)f(2)+2f[2^(-n-1)]}=-1/2.得证。
(3)由(1)(2)得,[2^1•b1]=[2f(0.5)]=-1/2,所以{2^n•bn}为首项为-1/2,公差为-1/2的等差数列。故2^n•bn=-n/2.所以bn=-n/2^(n+1)
令a=2,b=0.5则有f(1)=2f(0.5)+0.5f(2)得到f(0.5)=-1/4
(2)对任意n,有2^(n+1)•b(n+1)-2^n•bn=2^(n+1)•f[2^(-n-1)]-2^n•f[2^(-n)]=2^(n+1)•f[2^(-n-1)]-2^n•{f[2^(-n-1)•2]}=2^(n+1)•f[2^(-n-1)]-2^n{2^(-n-1)f(2)+2f[2^(-n-1)]}=-1/2.得证。
(3)由(1)(2)得,[2^1•b1]=[2f(0.5)]=-1/2,所以{2^n•bn}为首项为-1/2,公差为-1/2的等差数列。故2^n•bn=-n/2.所以bn=-n/2^(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询