整数集是数域吗,为什么

 我来答
匿名用户
2016-12-05
展开全部
数域定义:设F是一个数环,如果对任意的a,b∈F而且a≠0,则b/a∈F;则称F是一个数域.例如有理数集Q、实数集R、复数集C等都是数域. 显然没有整数域.
注:数环定义
设S是复数集的非空子集.如果S中的数对任意两个数的和、差、积仍属于S,则称S是一个数环.例如整数集Z就是一个数环,有理数集Q、实数集R、复数集C等都是数环.

从数域的定义看,1是整数,2是整数,但是1/2不是整数。
数域整数集合不满足数域的定义,不是数域。
大雅新科技有限公司
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,... 点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式