1个回答
展开全部
605 微分方程即 2(y^4-3x^2)dy + ydx^2 = 0
记 x^2 = f(y), 则 2(y^4-3f)dy + ydf = 0
y ≠ 0 时, df/dy - 6f/y = -2y^3
为一阶线性微分方程,通解是
f = e^(∫6dy/y)[∫-2y^3 e^(∫-6dy/y)dy + C]
= y^6[∫-2y^(-3)dy + C]
= y^6[y^(-2) + C] = y^4 + Cy^6
即 x^2 = y^4 + Cy^6
记 x^2 = f(y), 则 2(y^4-3f)dy + ydf = 0
y ≠ 0 时, df/dy - 6f/y = -2y^3
为一阶线性微分方程,通解是
f = e^(∫6dy/y)[∫-2y^3 e^(∫-6dy/y)dy + C]
= y^6[∫-2y^(-3)dy + C]
= y^6[y^(-2) + C] = y^4 + Cy^6
即 x^2 = y^4 + Cy^6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询