一道高一的向量题...
在直角坐标系中,A(1,t),C(-2t,2),向量OB=向量OA+向量OC(O是坐标原点),其中t∈(0,+∞)。(1)求四边形OABC在第一象限部分的面积S(t),(...
在直角坐标系中,A(1,t),C(-2t,2),向量OB=向量OA+向量OC(O是坐标原点),其中t∈(0,+∞)。
(1)求四边形OABC在第一象限部分的面积S(t),
(2)确定函数S(t)的单调区间,并求S(t)的最小值 展开
(1)求四边形OABC在第一象限部分的面积S(t),
(2)确定函数S(t)的单调区间,并求S(t)的最小值 展开
展开全部
由,向量OB=向量OA+向量OC可知,四边形OABC是以OA OC为相邻的边的平行四边形,
(1)可得向量OB=(1-2T,T+2),故B的坐标为(1-2T,T+2)
设直线AB的直线方程为Y=KX+B,将A B的坐标带入得
T=K+B
T+2=(1-2T)K+B
由以上俩式得
B=T+1/T
四边形OABC在第一象限部分的面积S=1/2*(T+1/T)*1
S(t)=1/2*(T+1/T)
(2)t∈(0,+∞),所以T+1/T>=2√T*I/T=2,当且仅当T=1/T时等号成立
S(t)的最小值为S(t)=1/2*(1+1/1)=1,这是典型的吊钩函数,在t∈(0,1)递减,t∈(1,+∞)递增(可以用求导的方法判断单调性,这应该会吧)
做题时划下图很容易做得,这种题目,见得多了就容易算了。
(1)可得向量OB=(1-2T,T+2),故B的坐标为(1-2T,T+2)
设直线AB的直线方程为Y=KX+B,将A B的坐标带入得
T=K+B
T+2=(1-2T)K+B
由以上俩式得
B=T+1/T
四边形OABC在第一象限部分的面积S=1/2*(T+1/T)*1
S(t)=1/2*(T+1/T)
(2)t∈(0,+∞),所以T+1/T>=2√T*I/T=2,当且仅当T=1/T时等号成立
S(t)的最小值为S(t)=1/2*(1+1/1)=1,这是典型的吊钩函数,在t∈(0,1)递减,t∈(1,+∞)递增(可以用求导的方法判断单调性,这应该会吧)
做题时划下图很容易做得,这种题目,见得多了就容易算了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
问题:已知向量a=-e1+3e2+2e3,b=4e1-6e2+2e3,c=-3e1+12e2+11e3,问向量a能否表示成a=Mb+Nc的形式
答案:
解:
M×b=4Me1-6Me2+2Me3
N×c=-3Ne1+12Ne2+11Ne3
M×b+N×c=(4M-3N)e1+(12N-6M)e2+(2M+11N)e3=a
∴4M-3N=-1
12N-6M=3 N=1/5 M=-1/10
将M=-1/10 N=1/5带入 2M+11N=2成立
∴向量a可以表示成a=Mb+Nc的形式
a=(-1/10)b+(1/5)c
如果不行,还有一个
设K,M是三角形ABC的边AB上的 两点,L,N是边AC上的两点,K在M,B之间,L在N,C之间,且BK/KM=CL/LN,求证:三角形ABC,三角形AKL,三角形AMN的垂心在一条直线上。
这个,应该不难吧~~~我没写答案,但我觉得上一个还可以
答案:
解:
M×b=4Me1-6Me2+2Me3
N×c=-3Ne1+12Ne2+11Ne3
M×b+N×c=(4M-3N)e1+(12N-6M)e2+(2M+11N)e3=a
∴4M-3N=-1
12N-6M=3 N=1/5 M=-1/10
将M=-1/10 N=1/5带入 2M+11N=2成立
∴向量a可以表示成a=Mb+Nc的形式
a=(-1/10)b+(1/5)c
如果不行,还有一个
设K,M是三角形ABC的边AB上的 两点,L,N是边AC上的两点,K在M,B之间,L在N,C之间,且BK/KM=CL/LN,求证:三角形ABC,三角形AKL,三角形AMN的垂心在一条直线上。
这个,应该不难吧~~~我没写答案,但我觉得上一个还可以
参考资料: www.baidu.com.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
直线L:4x-3y+9=0,斜率为4/3,所求直线垂直于L
所以所求直线斜率为-3/4
所求直线可设为3x
+
4y
+
p=0,代入A点p=-5
直线为3x
+
4y
-5=0
所以所求直线斜率为-3/4
所求直线可设为3x
+
4y
+
p=0,代入A点p=-5
直线为3x
+
4y
-5=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询