
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)的值。
1个回答
展开全部
(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2^4-1)(2^4+1)(2^8+1)…(2^2n+1)
=…… (连续运用平方差公式)
=2^4n-1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2^4-1)(2^4+1)(2^8+1)…(2^2n+1)
=…… (连续运用平方差公式)
=2^4n-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询