2个回答
展开全部
dy/dx = (1-y)/[(y-1)-(x-1)] , 令 u = x-1, v = y-1,
则原微分方程变为 dv/du = -v/(v-u) = -(v/u)/(v/u-1)
令 p= v/u, 微分方程变为 p+udp/du = -p/(p-1)
(p-1)dp/(p^2+2p) = -du/u
[3/(p+2) - 1/p] dp = -2du/u
3ln(p+2) - lnp = -2lnu + lnC
(p+2)^3/p = C/u^2
u^2(P+2)^3 = -Cp
(x-1)^2[(y-1)/(x-1)+2]^3 = -C(y-1)/(x-1)
通解 (2x+y-3)^3 = -C(y-1)
则原微分方程变为 dv/du = -v/(v-u) = -(v/u)/(v/u-1)
令 p= v/u, 微分方程变为 p+udp/du = -p/(p-1)
(p-1)dp/(p^2+2p) = -du/u
[3/(p+2) - 1/p] dp = -2du/u
3ln(p+2) - lnp = -2lnu + lnC
(p+2)^3/p = C/u^2
u^2(P+2)^3 = -Cp
(x-1)^2[(y-1)/(x-1)+2]^3 = -C(y-1)/(x-1)
通解 (2x+y-3)^3 = -C(y-1)
更多追问追答
追问
这个答案不对(°_°)…
追答
dy/dx = (1-y)/[(y-1)-(x-1)] , 令 u = x-1, v = y-1,
则原微分方程变为 dv/du = -v/(v-u) = -(v/u)/(v/u-1)
令 p= v/u, 微分方程变为 p+udp/du = -p/(p-1)
udp/du = -p^2/(p-1), (p-1)dp/p^2 = -du/u
[1/p - 1/p^2] dp = -du/u
lnp + 1/p = -lnu + lnC
pe^(1/p) = C/u
upe^(1/p) = C
通解 (y-1)e^[(x-1)/(y-1)] = C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |