高二数学立体几何题目 求详细解析 要过程

用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体(1)求证:所得截面MNPQ是平行四边形;(2)若AB=CD=a,求证:MNPQ的周长为定值(3)若AB=a,C... 用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体
(1)求证:所得截面MNPQ是平行四边形;
(2)若AB=CD=a,求证:MNPQ的周长为定值
(3)若AB=a,CD=b,AB,CD成阿尔法角,求四边形MNPQ面积的最大值,并确定此时点M的位置
展开
希望在田坝坝
2011-03-28 · TA获得超过107个赞
知道答主
回答量:13
采纳率:0%
帮助的人:0
展开全部
(1)证明:因为平面平行与棱AB,CD 所以设平面的AC,BC,AD,BD分别为N,M,P,Q。则:MN平行于AB,PQ平行于AB 得MN平行于PQ; 另外MQ平行于CD,PN平行于CD,得MQ平行于PN,所以MNPQ是平行四边形。(注:平行于平面的直线平行于与平面与该直线所在平面的交线)。
(2)证明:在平面ABC中,有MN平行AB,则MN/AB=CN/AC 同理有NP/CD=AN/AC(即NP/CD=(AC-CN)/AC=1-CN/AC=1-MN/AB)
则NP/a=1-MN/a 所以MN+PN=a 所以平行四边形MNPQ的周长为2a
由于工作忙,就先回答前两个简单的
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式