求sin^2 40°+cos^2 10°-sin40°sin80°的值.
2个回答
展开全部
用到积化和差公式和倍角公式
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cos^2 α=1/2(1+cos2α)
解:
sin^2 40°+cos^2 10°-sin40°sin80°
=cos^2 50°+cos^2 10°+1/2[cos (40°+80°)-cos(40°-80°)
=1/2(1+cos100°)+1/2(1+cos20°)+1/2[cos (40°+80°)-cos(40°-80°)
=1+1/2(cos100°+cos20°)+1/2(cos120°-cos40°)
=1+1/2(cos100°+cos20°)-1/4-1/2cos40°
=3/4+cos60°cos40°-1/2cos40°
=3/4
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cos^2 α=1/2(1+cos2α)
解:
sin^2 40°+cos^2 10°-sin40°sin80°
=cos^2 50°+cos^2 10°+1/2[cos (40°+80°)-cos(40°-80°)
=1/2(1+cos100°)+1/2(1+cos20°)+1/2[cos (40°+80°)-cos(40°-80°)
=1+1/2(cos100°+cos20°)+1/2(cos120°-cos40°)
=1+1/2(cos100°+cos20°)-1/4-1/2cos40°
=3/4+cos60°cos40°-1/2cos40°
=3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询