高二数学求详解

已知f(x)=ax^4+bx^2+c的图像过点(0,1),且在x=1处的切线方程是y=x-2第一问:求y=f(x)的解析式。第二问:求y=f(x)的单调增区间在线等!!!... 已知f(x)=ax^4+bx^2+c的图像过点(0,1),且在x=1处的切线方程是y=x-2 第一问:求y=f(x)的解析式。 第二问:求y=f(x)的单调增区间 在线等! ! ! 求过程加答案! ! 谢谢! 展开
合问佛S1
2011-03-28 · TA获得超过3668个赞
知道小有建树答主
回答量:1621
采纳率:0%
帮助的人:987万
展开全部
1.由题意知c=1,设切点坐标为(x,y)则f `(1)=4a+2b=1,a+b=-2,解得a=5/2,b=-9/2
故y=(5/2)x^4-9x²/2+1
2.令f `(x)=5x³-9x>0,得-3√5/5<x<0或x>3√5/5,
所以f(x)的递增区间为(-3√5/5,0)和(3√5/5,+∞)。
我还没注册么
2011-03-28 · TA获得超过2391个赞
知道小有建树答主
回答量:277
采纳率:0%
帮助的人:271万
展开全部
(1)因为过点(0,1),代入得c=1.
然后求f(x)一阶导数f‘(x)=4ax^3+2bx
则 k= 4a+2b=1 f(1)=a+b+c=a+b+1 =-1
解得 a=5/2 b= - 9/2 f(x)=5/2x^4-9/2x^2+1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hbc3193034
2011-03-28 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
f(0)=c=1,
f'(x)=4ax^3+2bx,f'(1)=4a+2b=1,
f(1)=a+b+1=-1,
解得a=5/2,b=-9/2.f(x)=(5/2)x^4-(9/2)x^2+1.
f'(x)=10x^3-9x=10x(x-3/√10)(x+3/√10),
-3/√10<x<0,或x>3/√10时f'(x)>0,f(x)↑。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式