X~π(λ1)是什么意思?顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),Y~π(λ2),证明Z=X+Y~
展开全部
是X~π(λ)泊松分布
证明:
P{X=k}=λ^k*e^(-λ)/k!
Y~π(μ)
P{Y=k}=μ^k*e^(-μ)/k!
Z=X+Y
P{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}
=∑(i=0,...k)[λ^i*e^(-λ)/i!]*[μ^(k-i)*e^(-μ)/(k-i)!]
=∑(i=0,...k)[λ^i*μ^(k-i)*e^(-λ-μ)]/[i!*(k-i)!]
=e^(-λ-μ)∑(i=0,...k)[λ^i*μ^(k-i)]/[i!*(k-i)!]
=e^(-λ-μ)∑(i=0,...k){k!/[i!*(k-i)!]}*[λ^i*μ^(k-i)]/k!
=e^(-λ-μ)∑(i=0,...k)[C(k,i)*λ^i*μ^(k-i)]/k!
=e^(-λ-μ)*(λ+μ)^k/k!
证明:
P{X=k}=λ^k*e^(-λ)/k!
Y~π(μ)
P{Y=k}=μ^k*e^(-μ)/k!
Z=X+Y
P{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}
=∑(i=0,...k)[λ^i*e^(-λ)/i!]*[μ^(k-i)*e^(-μ)/(k-i)!]
=∑(i=0,...k)[λ^i*μ^(k-i)*e^(-λ-μ)]/[i!*(k-i)!]
=e^(-λ-μ)∑(i=0,...k)[λ^i*μ^(k-i)]/[i!*(k-i)!]
=e^(-λ-μ)∑(i=0,...k){k!/[i!*(k-i)!]}*[λ^i*μ^(k-i)]/k!
=e^(-λ-μ)∑(i=0,...k)[C(k,i)*λ^i*μ^(k-i)]/k!
=e^(-λ-μ)*(λ+μ)^k/k!
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询