3个回答
展开全部
一般二重积分不等于两次积分直接相乘。如f(x,y)=g(x)h(y),且积分区域是矩形区域[a,b]×[c,d],则二重积分等于g(x)在[a,b]上定积分与h(y)在[c,d]定积分的乘积。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
扩展资料:
二重积分意义:
1、当被积函数大于零时,二重积分是柱体的体积。
2、当被积函数小于零时,二重积分是柱体体积负值。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
参考资料来源:百度百科——二重积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询