大一高数,求解
展开全部
定义域:
1≥x/(1+x)≥0,x≠-1
1≥1-1/(1+x)≥0
0≥-1/(1+x)≥-1
0≤1/(1+x)≤1
1+x>0,x>-1
0≤1≤1+x,x≥0
设x=tan²u,dx=2tanusec²udu,u∈[0,π/2],
原式=∫arcsin(tanu/secu)2tanusec²udu
=∫arcsin(sinu)2tanusec²udu
=∫2utanusec²udu
=∫2usinu/cos³udu
=-2∫u/cos³udcosu
=∫ud(cos^(-2)u)
=u/cos²u-∫1/cos²udu
=u/cos²u-∫(sin²u+cos²u)/cos²udu
=u/cos²u-∫(tan²u+1)du
=u/cos²u-∫sec²udu
=u/cos²u-tanu+C
验证:求导=1/cos²u+u(-2)/cos³u.(-sinu)-sec²u
=2usinu/cos³u=2utanu/cos²u
x=tan²u,√x=tanu,u=arctan√x,
x=0,u=0,x=3,u=π/3
积分值=(π/3)/cos²(π/3)-tan(π/3)
=4π/3-√3
1≥x/(1+x)≥0,x≠-1
1≥1-1/(1+x)≥0
0≥-1/(1+x)≥-1
0≤1/(1+x)≤1
1+x>0,x>-1
0≤1≤1+x,x≥0
设x=tan²u,dx=2tanusec²udu,u∈[0,π/2],
原式=∫arcsin(tanu/secu)2tanusec²udu
=∫arcsin(sinu)2tanusec²udu
=∫2utanusec²udu
=∫2usinu/cos³udu
=-2∫u/cos³udcosu
=∫ud(cos^(-2)u)
=u/cos²u-∫1/cos²udu
=u/cos²u-∫(sin²u+cos²u)/cos²udu
=u/cos²u-∫(tan²u+1)du
=u/cos²u-∫sec²udu
=u/cos²u-tanu+C
验证:求导=1/cos²u+u(-2)/cos³u.(-sinu)-sec²u
=2usinu/cos³u=2utanu/cos²u
x=tan²u,√x=tanu,u=arctan√x,
x=0,u=0,x=3,u=π/3
积分值=(π/3)/cos²(π/3)-tan(π/3)
=4π/3-√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询