
解下列不等式,用区间表示其解集:|x+2|<3;|x-1|<|2x+1|;√x-1-√2x-1≥√3x-2。求解?
1个回答
展开全部
|x+2|<3
-3<x+2<3
-5<x<1
(-5,1)
|x-1|<|2x+1|
(x-1)^2<(2x+1)^2
x^2-2x+1<4x^2+4x+1
3x^2+6x>0
x(x+2)>0
x>0或x<-2
(-inf,-2)或(0,inf)
√x-1-√2x-1≥√3x-2
x-1+2x-1-2√(x-1)(2x-1)>=3x-2
√(x-1)(2x-1)<=0
所以无实数根
-3<x+2<3
-5<x<1
(-5,1)
|x-1|<|2x+1|
(x-1)^2<(2x+1)^2
x^2-2x+1<4x^2+4x+1
3x^2+6x>0
x(x+2)>0
x>0或x<-2
(-inf,-2)或(0,inf)
√x-1-√2x-1≥√3x-2
x-1+2x-1-2√(x-1)(2x-1)>=3x-2
√(x-1)(2x-1)<=0
所以无实数根
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询