9个回答
展开全部
原题目为:我没抄错题目吧?图片看不清
设b > 0,当b等于何值时,抛物线y=b+2-bx² 与x轴所围成的面积最小?
首先确定抛物线与x轴的交点:
y = b + 2 - bx² = 0 ===> x1 = ±√((b + 2) / b } -----1个大于0,1个小于0
抛物线与x轴所围成的面积:
S = ∫(b + 2 - bx²) dx x = -√[(b + 2) / b] → + √[(b + 2) / b]
= 2 [(b+2)x - b/3 x³ ] 积分域关于y轴对称(加系数2),并且: x = 0 →+ √[(b + 2) / b]
= 2/3 x [3b + 6 - b x² ] 提取 x/3
= 2/3 √[(b + 2) / b] [ 3b + 6 - b (b + 2) / b]
= 2/3 √[(b + 2) / b] [ 3b + 6 - (b + 2) ]
= 2/3 √[(b + 2) / b] (2b + 4)
= 4/3 √[(b + 2) / b] (b + 2)
= 4/3 (b + 2) ^(3/2) / √b
S' = 4/3×{(b + 2) ^(3/2) / √b} '
= 4/3 * √(b+2) * (b-1) / b^1.5
令S ' = 0 ===> b = 1 或者 b = -2 (舍去)
结论:当b = 1时,抛物线y=b+2-bx² 与x轴所围成的面积最小,此时
y = 3 - x²
最小面积S = 4√3
********** 附带考虑一下 y 绕 Ox 轴的旋转体积最大问题 ***************
Vx = π∫y² dx = π∫(b + 2 - bx²)² dx
= 2π∫(b + 2 - bx²)² dx x = 0 → + √[(b + 2) / b]
= 2π ∫((b + 2)² - 2 b (b + 2)x² + b²x⁴) dx
= 2π x [(b + 2)² - 2/3 b (b + 2)x² + b²/5 x⁴]
= 2π √[(b + 2) / b] [(b + 2)² - 2/3 (b + 2)(b + 2) + 1/5 (b + 2)² ]
= 2π √[(b + 2) / b] [8/15(b + 2)²]
= 16π /15 (b + 2)^(5/2) / √b
Vx ' = (16π /15 (b + 2)^(5/2) / √b)'
= 16π /15 (2b - 1) (1+2/b)^1.5
结论:当b = 0.5时,抛物线y=b+2-bx² 与x轴所围成的体积最小,此时
y = 3 - x² /2
最小体积V = 20π√5 / 3
简直累死我了,一定加分哦
设b > 0,当b等于何值时,抛物线y=b+2-bx² 与x轴所围成的面积最小?
首先确定抛物线与x轴的交点:
y = b + 2 - bx² = 0 ===> x1 = ±√((b + 2) / b } -----1个大于0,1个小于0
抛物线与x轴所围成的面积:
S = ∫(b + 2 - bx²) dx x = -√[(b + 2) / b] → + √[(b + 2) / b]
= 2 [(b+2)x - b/3 x³ ] 积分域关于y轴对称(加系数2),并且: x = 0 →+ √[(b + 2) / b]
= 2/3 x [3b + 6 - b x² ] 提取 x/3
= 2/3 √[(b + 2) / b] [ 3b + 6 - b (b + 2) / b]
= 2/3 √[(b + 2) / b] [ 3b + 6 - (b + 2) ]
= 2/3 √[(b + 2) / b] (2b + 4)
= 4/3 √[(b + 2) / b] (b + 2)
= 4/3 (b + 2) ^(3/2) / √b
S' = 4/3×{(b + 2) ^(3/2) / √b} '
= 4/3 * √(b+2) * (b-1) / b^1.5
令S ' = 0 ===> b = 1 或者 b = -2 (舍去)
结论:当b = 1时,抛物线y=b+2-bx² 与x轴所围成的面积最小,此时
y = 3 - x²
最小面积S = 4√3
********** 附带考虑一下 y 绕 Ox 轴的旋转体积最大问题 ***************
Vx = π∫y² dx = π∫(b + 2 - bx²)² dx
= 2π∫(b + 2 - bx²)² dx x = 0 → + √[(b + 2) / b]
= 2π ∫((b + 2)² - 2 b (b + 2)x² + b²x⁴) dx
= 2π x [(b + 2)² - 2/3 b (b + 2)x² + b²/5 x⁴]
= 2π √[(b + 2) / b] [(b + 2)² - 2/3 (b + 2)(b + 2) + 1/5 (b + 2)² ]
= 2π √[(b + 2) / b] [8/15(b + 2)²]
= 16π /15 (b + 2)^(5/2) / √b
Vx ' = (16π /15 (b + 2)^(5/2) / √b)'
= 16π /15 (2b - 1) (1+2/b)^1.5
结论:当b = 0.5时,抛物线y=b+2-bx² 与x轴所围成的体积最小,此时
y = 3 - x² /2
最小体积V = 20π√5 / 3
简直累死我了,一定加分哦
展开全部
我很想答 但他们都做出来了 就不用麻烦了 还有我也是大学生
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-03-30
展开全部
b=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-03-30
展开全部
微积分自己搞
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询