用比较原则判别下列级数的敛散性。 5

 我来答
超级大超越
2017-10-08 · TA获得超过1万个赞
知道大有可为答主
回答量:6636
采纳率:64%
帮助的人:1516万
展开全部
指数小于2n·(1/n)=2,收敛
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-10-08
展开全部
lim(x→1)[(a(x-1)^2+b(x-1)+c-√(x^2+3))/(x-1)^2=0
lim(x→1)[(a(x-1)^2+b(x-1)+c-√(x^2+3))=0
c-2=0,c=2
lim(x→1)[(a(x-1)^2+b(x-1)+2-√(x^2+3))/(x-1)^2=0
罗比达法则
lim(x→1)[(2a(x-1)+b-x/√(x^2+3))/2(x-1)=0
lim(x→1)[(2a(x-1)+b-x/√(x^2+3))=0
b-1/2=0,b=0.5
罗比达法则
lim(x→1)[(2a-[[√(x^2+3)-x^2/√(x^2+3)]/(x^2+3)])/2=0
lim(x→1)[(2a-[[√(x^2+3)-x^2/√(x^2+3)]/(x^2+3)])=0
2a-3/8=0
a=3/16
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式